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Assignment #8

Due on Wednesday, November 16, 2011

Read Section 2.6 on Curves and Simple Arcs and Orientation, pp. 45–56, in Baxan-
dall and Liebek’s text.

Read Section 2.7 on Path Length and Length of Simple Arcs, pp. 59–66, in Baxandall
and Liebek’s text.

Read Section 5.2 on Integral of a scalar Field Along a Path, pp. 269–279, in Baxan-
dall and Liebek’s text.

Read Section 5.3 on Integral of a Vector Field Along a Path, pp. 281–290, in Baxan-
dall and Liebek’s text.

Read Section 5.1 on the Path Integral in the class Lecture Notes (pp. 61–68).

Read Section 5.2 on Line Integrals in the class Lecture Notes (pp. 69–72).

Background and Definitions

∙ (Parametrization) Let I denote and interval of real numbers, � : I → ℝn be a
continuous path, and let C denote the image of I under �. Then, C is called a
curve in ℝn. If � is one–to–one on I, then � is called a parametrization of C.
For example, if v and u are distinct vectors in ℝn, then

�(t) = u+ t(v − u), for 0 ⩽ t ⩽ 1,

is a parametrization of the straight line segment from the point u to the point
v in ℝn.

∙ (C1 Curves) If C is parametrized by a C1 path, � : I → ℝn, with �′(t) ∕= 0 for
all t ∈ I, the curve C is said to be a C1 curve or a smooth curve.

∙ (Simple Closed Curves) If � : [a, b]→ ℝn is a parametrization of a curve C, with
�(a) = �(b) and � : [a, b)→ ℝn being one–to–one, then C is said to be a simple
closed curve.

∙ (Reparametrizations) Let � : [a, b] → ℝn be a differentiable, one–to–one path.
Suppose also that �′(t), is never the zero vector. Let ℎ : [c, d] → [a, b] be a
differentiable, one–to–one and onto map such that ℎ′(t) ∕= 0 for all t ∈ [c, d].
Define

(t) = �(ℎ(t)) for all t ∈ [c, d].

 : [c, d]→ ℝn is a called a reparametrization of �
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∙ (Arc Length Parameter) Let I denote an open interval in ℝ, and � : I → ℝn be
a parametrization of a curve C. For fixed a ∈ I, define

s(t) =

∫ t

a

∥�′(�)∥ d� for all t ∈ I. (1)

The parameter s = s(t) measures the length along the curve C from the point
�(a) to the point �(t).

∙ Let U be an open subset of ℝn and f : U → ℝ be a continuous scalar field.
Let C ⊂ U be a C1 simple curve. We define the integral of f over C, denoted∫
C

f ds, to be ∫
C

f ds =

∫ b

a

f(�(t))∥�′(t)∥ dt,

where � : [a, b]→ ℝn is any C1 parametrization of C.

∙ A curve, C, is said to be piece–wise C1 if C can be decomposed into a finite
union of C1 simple curves, C1, C2, . . . , Ck:

C =
k∪

i=1

Ci.

If C ⊂ U , where U is an open subset of ℝn, and f : U → ℝ is a continuous
scalar field, we define the integral of f over C by∫

C

f ds =
k∑
i=i

∫
Ci

f ds.

∙ (Flux Across a Simple, Closed Curve in ℝ2) Let U denote an open subset of ℝ2

and F : U → ℝ2 be a two–dimensional vector field given by

F (x, y) = P (x, y) î+Q(x, y) ĵ, for all (x, y) ∈ U,

where P and Q are scalar fields defined in U . Let C denote a simple, piece–wise
C1, closed curve contained in U , which is oriented in the counterclockwise sense.

The flux of F across C, denoted by

∮
C

F ⋅ n̂ ds, is defined by∮
C

F ⋅ n̂ ds =

∫
C

P (x, y) dy −Q(x, y) dx,

where n̂ denotes the outward unit normal to the curve C, wherever it is defined.
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Do the following problems

1. Let �(t) = (x(t), y(t)), for t ∈ [a, b], be a parametrization of a simple closed
curve. Assume that � is oriented in the counterclockwise sense. Give the unit
vector to the curve at �(t), for t ∈ (a, b), which is perpendicular to �′(t) and
points towards the exterior of the curve.

2. Show that the arc length parameter defined in (1) is differentiable on I and
compute s′(t) for all t ∈ I. Deduce that s(t) is a strictly increasing function of
t in I.

3. Find the mass of a wire that is parametrized by

C =

{(
3

2
t2, (1 + 2t)3/2

) ∣∣∣ 0 ⩽ t ⩽ 2

}
and has a density given by �(x, y) = 2x+ 1.

4. Consider a portion of a helix, C, parametrized by the path

�(t) = (cos t, t, sin t) for 0 ⩽ t ⩽ �.

Let f(x, y, z) = x2 + y2 + z2 for all (x, y, z) ∈ ℝ3. Evaluate

∫
C

f.

5. Evaluate

∫
C

(x3−yz) ds, where C is the intersection of the planes x+y−z = 1

and z = 3x from x = 0 to x = 1.

6. Let C denote the boundary of the square

R = {(x, y) ∈ ℝ2 ∣ −1 ⩽ x ⩽ 1,−1 ⩽ y ⩽ 1}.

Evaluate the integral of f(x, y) = xy2, for (x, y) ∈ ℝ2, over C.

Note: Observe that C is not a C1 curve, but it can be decomposed into an
union of four simple, C1 curves.
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7. Consider a portion of a helix, C, parametrized by the path

�(t) = (cos t, t, sin t) for 0 ⩽ t ⩽ �.

Let F (x, y, z) = x î + y ĵ + z k̂, for all (x, y, z) ∈ ℝ3, be a vector field in ℝ3.

Evaluate the line integral

∫
C

F ⋅ d−→r ; that is, the integral of the tangential

component of the field F along the curve C.

8. Let f : U → ℝ be a C1 scalar field defined on an open subset U of ℝn. Define
the vector field F : U → ℝn by F (x) = ∇f(x) for all x ∈ U . Suppose that C is
a C1 simple curve in U connecting the point x to the point y in U . Show that∫

C

F ⋅ d−→r = f(y)− f(x).

Conclude therefore that the line integral of F along a path from x to y in U
is independent of the path connecting x to y. The field F is called a gradient
field.

9. Let F (x, y) = x2 î + y2 ĵ and C be the boundary of the square with vertices
(0, 0), (1, 0), (1, 1) and (0, 1), oriented in the in the counterclockwise sense.
Compute the flux of F across C.

10. Compute the flux,

∮
C

F ⋅ n̂ ds, where F (x, y) = x î + y ĵ, for all (x, y) ∈ ℝ2

and C is the unit circle oriented in the counterclockwise sense.


