Assignment #8

Due on Wednesday, November 16, 2011

Read Section 2.6 on *Curves and Simple Arcs and Orientation*, pp. 45–56, in Baxandall and Liebek's text.

Read Section 2.7 on *Path Length and Length of Simple Arcs*, pp. 59–66, in Baxandall and Liebek's text.

Read Section 5.2 on *Integral of a scalar Field Along a Path*, pp. 269–279, in Baxandall and Liebek's text.

Read Section 5.3 on *Integral of a Vector Field Along a Path*, pp. 281–290, in Baxandall and Liebek's text.

Read Section 5.1 on the *Path Integral* in the class Lecture Notes (pp. 61–68).

Read Section 5.2 on *Line Integrals* in the class Lecture Notes (pp. 69–72).

Background and Definitions

• (Parametrization) Let I denote and interval of real numbers, $\sigma: I \to \mathbb{R}^n$ be a continuous path, and let C denote the image of I under σ . Then, C is called a curve in \mathbb{R}^n . If σ is one-to-one on I, then σ is called a parametrization of C. For example, if v and u are distinct vectors in \mathbb{R}^n , then

$$\sigma(t) = u + t(v - u), \quad \text{for } 0 \le t \le 1,$$

is a parametrization of the straight line segment from the point u to the point v in \mathbb{R}^n .

- (C¹ Curves) If C is parametrized by a C¹ path, $\sigma: I \to \mathbb{R}^n$, with $\sigma'(t) \neq \mathbf{0}$ for all $t \in I$, the curve C is said to be a C¹ curve or a smooth curve.
- (Simple Closed Curves) If $\sigma: [a, b] \to \mathbb{R}^n$ is a parametrization of a curve C, with $\sigma(a) = \sigma(b)$ and $\sigma: [a, b) \to \mathbb{R}^n$ being one-to-one, then C is said to be a simple closed curve.
- (Reparametrizations) Let $\sigma: [a, b] \to \mathbb{R}^n$ be a differentiable, one-to-one path. Suppose also that $\sigma'(t)$, is never the zero vector. Let $h: [c, d] \to [a, b]$ be a differentiable, one-to-one and onto map such that $h'(t) \neq 0$ for all $t \in [c, d]$. Define

 $\gamma(t) = \sigma(h(t))$ for all $t \in [c, d]$.

 $\gamma \colon [c,d] \to \mathbb{R}^n$ is a called a *reparametrization* of σ

Math 107. Rumbos

• (Arc Length Parameter) Let I denote an open interval in \mathbb{R} , and $\sigma: I \to \mathbb{R}^n$ be a parametrization of a curve C. For fixed $a \in I$, define

$$s(t) = \int_{a}^{t} \|\sigma'(\tau)\| \, \mathrm{d}\tau \quad \text{for all} \ t \in I.$$
(1)

The parameter s = s(t) measures the length along the curve C from the point $\sigma(a)$ to the point $\sigma(t)$.

• Let U be an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}$ be a continuous scalar field. Let $C \subset U$ be a C^1 simple curve. We define the integral of f over C, denoted $\int_C f \, \mathrm{d}s$, to be

$$\int_C f \, \mathrm{d}s = \int_a^b f(\sigma(t)) \|\sigma'(t)\| \, \mathrm{d}t,$$

where $\sigma \colon [a, b] \to \mathbb{R}^n$ is any C^1 parametrization of C.

• A curve, C, is said to be piece-wise C^1 if C can be decomposed into a finite union of C^1 simple curves, C_1, C_2, \ldots, C_k :

$$C = \bigcup_{i=1}^{k} C_i.$$

If $C \subset U$, where U is an open subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is a continuous scalar field, we define the integral of f over C by

$$\int_C f \, \mathrm{d}s = \sum_{i=i}^k \int_{C_i} f \, \mathrm{d}s.$$

• (Flux Across a Simple, Closed Curve in \mathbb{R}^2) Let U denote an open subset of \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ be a two-dimensional vector field given by

$$F(x,y) = P(x,y) \ \hat{i} + Q(x,y) \ \hat{j}, \quad \text{ for all } (x,y) \in U,$$

where P and Q are scalar fields defined in U. Let C denote a simple, piece–wise C^1 , closed curve contained in U, which is oriented in the counterclockwise sense. The flux of F across C, denoted by $\oint_C F \cdot \hat{n} \, \mathrm{d}s$, is defined by

$$\oint_C F \cdot \hat{n} \, \mathrm{d}s = \int_C P(x, y) \, \mathrm{d}y - Q(x, y) \, \mathrm{d}x,$$

where \hat{n} denotes the outward unit normal to the curve C, wherever it is defined.

Math 107. Rumbos

Do the following problems

- 1. Let $\sigma(t) = (x(t), y(t))$, for $t \in [a, b]$, be a parametrization of a simple closed curve. Assume that σ is oriented in the counterclockwise sense. Give the unit vector to the curve at $\sigma(t)$, for $t \in (a, b)$, which is perpendicular to $\sigma'(t)$ and points towards the exterior of the curve.
- 2. Show that the arc length parameter defined in (1) is differentiable on I and compute s'(t) for all $t \in I$. Deduce that s(t) is a strictly increasing function of t in I.
- 3. Find the mass of a wire that is parametrized by

$$C = \left\{ \left(\frac{3}{2} t^2, (1+2t)^{3/2} \right) \ \Big| \ 0 \le t \le 2 \right\}$$

and has a density given by $\rho(x, y) = 2x + 1$.

4. Consider a portion of a helix, C, parametrized by the path

$$\sigma(t) = (\cos t, t, \sin t) \quad \text{for} \ \ 0 \le t \le \pi.$$

Let $f(x, y, z) = x^2 + y^2 + z^2$ for all $(x, y, z) \in \mathbb{R}^3$. Evaluate $\int_C f$.

- 5. Evaluate $\int_C (x^3 yz) \, ds$, where C is the intersection of the planes x + y z = 1and z = 3x from x = 0 to x = 1.
- 6. Let C denote the boundary of the square

$$R = \{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 1, -1 \leqslant y \leqslant 1 \}.$$

Evaluate the integral of $f(x, y) = xy^2$, for $(x, y) \in \mathbb{R}^2$, over C.

Note: Observe that C is not a C^1 curve, but it can be decomposed into an union of four simple, C^1 curves.

7. Consider a portion of a helix, C, parametrized by the path

$$\sigma(t) = (\cos t, t, \sin t) \quad \text{for } 0 \le t \le \pi.$$

Let $F(x, y, z) = x \ \hat{i} + y \ \hat{j} + z \ \hat{k}$, for all $(x, y, z) \in \mathbb{R}^3$, be a vector field in \mathbb{R}^3 . Evaluate the line integral $\int_C F \cdot d\overrightarrow{r}$; that is, the integral of the tangential component of the field F along the curve C.

8. Let $f: U \to \mathbb{R}$ be a C^1 scalar field defined on an open subset U of \mathbb{R}^n . Define the vector field $F: U \to \mathbb{R}^n$ by $F(x) = \nabla f(x)$ for all $x \in U$. Suppose that C is a C^1 simple curve in U connecting the point x to the point y in U. Show that

$$\int_C F \cdot \, \mathrm{d} \overrightarrow{r'} = f(y) - f(x).$$

Conclude therefore that the line integral of F along a path from x to y in U is independent of the path connecting x to y. The field F is called a *gradient* field.

- 9. Let $F(x,y) = x^2 \hat{i} + y^2 \hat{j}$ and C be the boundary of the square with vertices (0,0), (1,0), (1,1) and (0,1), oriented in the in the counterclockwise sense. Compute the flux of F across C.
- 10. Compute the flux, $\oint_C F \cdot \hat{n} \, ds$, where $F(x, y) = x \hat{i} + y \hat{j}$, for all $(x, y) \in \mathbb{R}^2$ and C is the unit circle oriented in the counterclockwise sense.