Assignment \#8

Due on Wednesday, November 16, 2011
Read Section 2.6 on Curves and Simple Arcs and Orientation, pp. 45-56, in Baxandall and Liebek's text.
Read Section 2.7 on Path Length and Length of Simple Arcs, pp. 59-66, in Baxandall and Liebek's text.

Read Section 5.2 on Integral of a scalar Field Along a Path, pp. 269-279, in Baxandall and Liebek's text.

Read Section 5.3 on Integral of a Vector Field Along a Path, pp. 281-290, in Baxandall and Liebek's text.

Read Section 5.1 on the Path Integral in the class Lecture Notes (pp. 61-68).
Read Section 5.2 on Line Integrals in the class Lecture Notes (pp. 69-72).

Background and Definitions

- (Parametrization) Let I denote and interval of real numbers, $\sigma: I \rightarrow \mathbb{R}^{n}$ be a continuous path, and let C denote the image of I under σ. Then, C is called a curve in \mathbb{R}^{n}. If σ is one-to-one on I, then σ is called a parametrization of C. For example, if v and u are distinct vectors in \mathbb{R}^{n}, then

$$
\sigma(t)=u+t(v-u), \quad \text { for } 0 \leqslant t \leqslant 1,
$$

is a parametrization of the straight line segment from the point u to the point v in \mathbb{R}^{n}.

- (C^{1} Curves) If C is parametrized by a C^{1} path, $\sigma: I \rightarrow \mathbb{R}^{n}$, with $\sigma^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$, the curve C is said to be a C^{1} curve or a smooth curve.
- (Simple Closed Curves) If $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ is a parametrization of a curve C, with $\sigma(a)=\sigma(b)$ and $\sigma:[a, b) \rightarrow \mathbb{R}^{n}$ being one-to-one, then C is said to be a simple closed curve.
- (Reparametrizations) Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a differentiable, one-to-one path. Suppose also that $\sigma^{\prime}(t)$, is never the zero vector. Let $h:[c, d] \rightarrow[a, b]$ be a differentiable, one-to-one and onto map such that $h^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of σ

- (Arc Length Parameter) Let I denote an open interval in \mathbb{R}, and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a parametrization of a curve C. For fixed $a \in I$, define

$$
\begin{equation*}
s(t)=\int_{a}^{t}\left\|\sigma^{\prime}(\tau)\right\| \mathrm{d} \tau \quad \text { for all } t \in I \tag{1}
\end{equation*}
$$

The parameter $s=s(t)$ measures the length along the curve C from the point $\sigma(a)$ to the point $\sigma(t)$.

- Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ be a continuous scalar field. Let $C \subset U$ be a C^{1} simple curve. We define the integral of f over C, denoted $\int_{C} f \mathrm{~d} s$, to be

$$
\int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\sigma(t))\left\|\sigma^{\prime}(t)\right\| \mathrm{d} t
$$

where $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ is any C^{1} parametrization of C.

- A curve, C, is said to be piece-wise C^{1} if C can be decomposed into a finite union of C^{1} simple curves, $C_{1}, C_{2}, \ldots, C_{k}$:

$$
C=\bigcup_{i=1}^{k} C_{i}
$$

If $C \subset U$, where U is an open subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is a continuous scalar field, we define the integral of f over C by

$$
\int_{C} f \mathrm{~d} s=\sum_{i=i}^{k} \int_{C_{i}} f \mathrm{~d} s
$$

- (Flux Across a Simple, Closed Curve in $\left.\mathbb{R}^{2}\right)$ Let U denote an open subset of \mathbb{R}^{2} and $F: U \rightarrow \mathbb{R}^{2}$ be a two-dimensional vector field given by

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}, \quad \text { for all }(x, y) \in U
$$

where P and Q are scalar fields defined in U. Let C denote a simple, piece-wise C^{1}, closed curve contained in U, which is oriented in the counterclockwise sense. The flux of F across C, denoted by $\oint_{C} F \cdot \widehat{n} \mathrm{~d} s$, is defined by

$$
\oint_{C} F \cdot \widehat{n} \mathrm{~d} s=\int_{C} P(x, y) \mathrm{d} y-Q(x, y) \mathrm{d} x
$$

where \widehat{n} denotes the outward unit normal to the curve C, wherever it is defined.

Do the following problems

1. Let $\sigma(t)=(x(t), y(t))$, for $t \in[a, b]$, be a parametrization of a simple closed curve. Assume that σ is oriented in the counterclockwise sense. Give the unit vector to the curve at $\sigma(t)$, for $t \in(a, b)$, which is perpendicular to $\sigma^{\prime}(t)$ and points towards the exterior of the curve.
2. Show that the arc length parameter defined in (1) is differentiable on I and compute $s^{\prime}(t)$ for all $t \in I$. Deduce that $s(t)$ is a strictly increasing function of t in I.
3. Find the mass of a wire that is parametrized by

$$
C=\left\{\left.\left(\frac{3}{2} t^{2},(1+2 t)^{3 / 2}\right) \right\rvert\, 0 \leqslant t \leqslant 2\right\}
$$

and has a density given by $\rho(x, y)=2 x+1$.
4. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \quad \text { for } 0 \leqslant t \leqslant \pi .
$$

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$. Evaluate $\int_{C} f$.
5. Evaluate $\int_{C}\left(x^{3}-y z\right) \mathrm{d} s$, where C is the intersection of the planes $x+y-z=1$ and $z=3 x$ from $x=0$ to $x=1$.
6. Let C denote the boundary of the square

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1\right\}
$$

Evaluate the integral of $f(x, y)=x y^{2}$, for $(x, y) \in \mathbb{R}^{2}$, over C.
Note: Observe that C is not a C^{1} curve, but it can be decomposed into an union of four simple, C^{1} curves.
7. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \quad \text { for } \quad 0 \leqslant t \leqslant \pi
$$

Let $F(x, y, z)=x \widehat{i}+y \widehat{j}+z \widehat{k}$, for all $(x, y, z) \in \mathbb{R}^{3}$, be a vector field in \mathbb{R}^{3}. Evaluate the line integral $\int_{C} F \cdot \mathrm{~d} \vec{r}$; that is, the integral of the tangential component of the field F along the curve C.
8. Let $f: U \rightarrow \mathbb{R}$ be a C^{1} scalar field defined on an open subset U of \mathbb{R}^{n}. Define the vector field $F: U \rightarrow \mathbb{R}^{n}$ by $F(x)=\nabla f(x)$ for all $x \in U$. Suppose that C is a C^{1} simple curve in U connecting the point x to the point y in U. Show that

$$
\int_{C} F \cdot \mathrm{~d} \vec{r}=f(y)-f(x)
$$

Conclude therefore that the line integral of F along a path from x to y in U is independent of the path connecting x to y. The field F is called a gradient field.
9. Let $F(x, y)=x^{2} \widehat{i}+y^{2} \widehat{j}$ and C be the boundary of the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$, oriented in the in the counterclockwise sense. Compute the flux of F across C.
10. Compute the flux, $\oint_{C} F \cdot \widehat{n} \mathrm{~d} s$, where $F(x, y)=x \widehat{i}+y \widehat{j}$, for all $(x, y) \in \mathbb{R}^{2}$ and C is the unit circle oriented in the counterclockwise sense.

