Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by $4 x-y-3 z=12$.
2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.
6. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$ Prove that f is continuous at $(0,0)$.
7. Show that

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is not continuous at $(0,0)$.
8. Determine the value of L that would make the function

$$
f(x, y)= \begin{cases}x \sin \left(\frac{1}{y}\right) & \text { if } y \neq 0 \\ L & \text { otherwise }\end{cases}
$$

continuous at $(0,0)$. Is $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous on \mathbb{R}^{2} ? Justify your answer.
9. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the path given by

$$
\sigma(t)=(2 \cos t, \sin t), \quad \text { for } t \in \mathbb{R}
$$

(a) Sketch the image of σ.
(b) Find a tangent vector to the path at $t=\pi / 4$.
(c) Give the parametric equations to the tangent line to the path at $t=\pi / 4$. Sketch the line.
10. Let I denote an open interval, and $\sigma: I \rightarrow \mathbb{R}^{n}$ and $\gamma: I \rightarrow \mathbb{R}^{n}$ be differentiable paths on I. Define $h(t)=\sigma(t) \cdot \gamma(t)$ for all $t \in \mathbb{R}$. Show that $h: I \rightarrow \mathbb{R}$ is differentiable on I and verify that

$$
h^{\prime}(t)=\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t), \quad \text { for all } t \in I
$$

11. Let I denote an open interval, and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path satisfying $\|\sigma(t)\|=c$, a constant, for all $t \in I$. Show that, at any $t \in I, \sigma(t)$ is orthogonal to a tangent vector to the path at that t.
12. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $\sigma(t)=\left(t^{1 / 3}, t\right)$ for all $t \in \mathbb{R}$. Show that σ is not differentiable at 0 .
