Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

Solution: The point $P_{o}(3,0,0)$ is in the plane. Let

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
1 \\
0 \\
-7
\end{array}\right)
$$

The vector $n=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right) \quad$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$
d=\left\|\mathrm{P}_{\widehat{n}}(w)\right\|,
$$

where

$$
\widehat{n}=\frac{1}{\sqrt{26}}\left(\begin{array}{c}
4 \\
-1 \\
-3
\end{array}\right)
$$

a unit vector in the direction of n, and

$$
\mathrm{P}_{\widehat{n}}(w)=(w \cdot \widehat{n}) \widehat{n}
$$

It then follows that

$$
d=|w \cdot \widehat{n}|
$$

where $w \cdot \widehat{n}=\frac{1}{\sqrt{26}}(4+21)=\frac{25}{\sqrt{26}}$. Hence, $d=\frac{25 \sqrt{26}}{26} \approx 4.9$.
2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

Solution: The point $P_{o}(-1,0,2)$ is on the line. The vector

$$
v=\left(\begin{array}{c}
4 \\
-7 \\
-1
\end{array}\right)
$$

gives the direction of the line. Put

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
5 \\
0 \\
-9
\end{array}\right)
$$

The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_{o}. We then have that

$$
\operatorname{area}(P(v, w))=\|v\| d
$$

from which we get that

$$
d=\frac{\operatorname{area}(P(v, w))}{\|v\|}
$$

On the other hand,

$$
\operatorname{area}(P(v, w))=\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
4 & -7 & -1 \\
5 & 0 & -9
\end{array}\right|=63 \widehat{i}+31 \widehat{j}+35 \widehat{k}
$$

Thus, $\|v \times w\|=\sqrt{(63)^{2}+(31)^{2}+(35)^{2}}=\sqrt{6155}$ and therefore

$$
d=\frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$

Solution: Label the points $P_{o}(1,1,0), P_{1}(2,0,1)$ and $P_{2}(0,3,1)$ and define the vectors

$$
v=\overrightarrow{P_{o} P_{1}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad w=\overrightarrow{P_{o} P_{2}}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) .
$$

The area of the triangle determined by the points P_{o}, P_{1} and P_{2} is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$
\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2}\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right|=-3 \widehat{i}-2 \widehat{j}+\widehat{k}
$$

Consequently, $\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2} \sqrt{9+4+1}=\frac{\sqrt{14}}{2} \approx 1.87$.
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w+\lambda v$ is

$$
\operatorname{area}(P(v, w+\lambda v))=\|v \times(w+\lambda v)\|
$$

where

$$
v \times(w+\lambda v)=v \times w+\lambda v \times v=v \times w .
$$

Consequently, $\operatorname{area}(P(v, w+\lambda v))=\|v \times w\|=\operatorname{area}(P(v, w))$.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \quad \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.

Solution: $P_{\widehat{u}}(v)=(v \cdot \widehat{u}) \widehat{u}$ for all $v \in \mathbb{R}^{n}$. Consequently, for any $w, v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
P_{\widehat{u}}(w)-P_{\widehat{u}}(v) & =(w \cdot \widehat{u}) \widehat{u}-(v \cdot \widehat{u}) \widehat{u} \\
& =(w \cdot \widehat{u}-v \cdot \widehat{u}) \widehat{u} \\
& =[(w-v) \cdot \widehat{u}] \widehat{u} .
\end{aligned}
$$

It then follows that

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=|(w-v) \cdot \widehat{u}|,
$$

since $\|\widehat{u}\|=1$. Hence, by the Cauchy-Schwarz inequality,

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\| \leqslant\|w-v\| .
$$

Applying the Squeeze Theorem we then get that

$$
\lim _{\|w-v\| \rightarrow 0}\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=0
$$

which shows that $P_{\widehat{u}}$ is continuous at every $v \in V$.
6. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that f is continuous at $(0,0)$.
Solution: For $(x, y) \neq(0,0)$

$$
\begin{aligned}
|f(x, y)| & =\frac{x^{2}|y|}{x^{2}+y^{2}} \\
& \leqslant|y|
\end{aligned}
$$

since $x^{2} \leqslant x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. We then have that, for $(x, y) \neq$ $(0,0)$,

$$
|f(x, y)| \leqslant \sqrt{x^{2}+y^{2}}
$$

which implies that

$$
0 \leqslant|f(x, y)-f(0,0)| \leqslant\|(x, y)-(0,0)\|
$$

for $(x, y) \neq(0,0)$. Thus, by the Squeeze Theorem,

$$
\lim _{\|(x, y)-(0,0)\| \rightarrow 0}|f(x, y)-f(0,0)|=0
$$

which shows that f is continuous at $(0,0)$.
7. Show that

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is not continuous at $(0,0)$.
Solution: Let $\sigma_{1}(t)=(t, t)$ for all $t \in \mathbb{R}$ and observe that

$$
\lim _{t \rightarrow 0} \sigma_{1}(t)=(0,0)
$$

and

$$
f(\sigma(t))=0, \quad \text { for all } t \neq 0
$$

It then follows that

$$
\lim _{t \rightarrow 0} f\left(\sigma_{1}(t)\right)=0
$$

Thus, if f were continuous at $(0,0)$, we would have that

$$
\begin{equation*}
f(0,0)=0 . \tag{1}
\end{equation*}
$$

On the other hand, if we let $\sigma_{2}(t)=(t, 0)$, we would have that

$$
\lim _{t \rightarrow 0} \sigma_{2}(t)=(0,0)
$$

and

$$
f(\sigma(t))=1, \quad \text { for all } t \neq 0
$$

Thus, if f were continuous at $(0,0)$, we would have that

$$
f(0,0)=1,
$$

which is in contradiction with (1). This contradiction shows that f is not continuous at $(0,0)$.
8. Determine the value of L that would make the function

$$
f(x, y)= \begin{cases}x \sin \left(\frac{1}{y}\right) & \text { if } y \neq 0 \\ L & \text { otherwise }\end{cases}
$$

continuous at $(0,0)$. Is $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous on \mathbb{R}^{2} ? Justify your answer.
Solution: Observe that, for $y \neq 0$,

$$
\begin{aligned}
|f(x, y)| & =\left|x \sin \left(\frac{1}{y}\right)\right| \\
& =|x|\left|\sin \left(\frac{1}{y}\right)\right| \\
& \leqslant|x| \\
& \leqslant \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

It then follows that, for $y \neq 0$,

$$
0 \leqslant|f(x, y)| \leqslant\|(x, y)\|
$$

Consequently, by the Squeeze Theorem,

$$
\lim _{\|(x, y)\| \rightarrow 0}|f(x, y)|=0
$$

This suggests that we define $L=0$. If this is the case,

$$
\lim _{\|(x, y)\| \rightarrow 0}|f(x, y)-f(0,0)|=0
$$

which shows that f is continuous at $(0,0)$ if $L=0$.
Next, assume now that $L=0$ in the definition of f. Then, for any $a \neq 0, f$ fails for be continuous at $(a, 0)$. To see why this is case, note that for any $y \neq 0$

$$
f(a, y)=a \sin \left(\frac{1}{y}\right)
$$

and the limit of $\sin \left(\frac{1}{y}\right)$ as $y \rightarrow 0$ does not exist.
9. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the path given by

$$
\sigma(t)=(2 \cos t, \sin t), \quad \text { for } t \in \mathbb{R}
$$

(a) Sketch the image of σ.

Solution: The image of σ is the set,

$$
\sigma(\mathbb{R})=\left\{(x, y) \in \mathbb{R}^{2} \mid x=2 \cos t, y=\sin t, \text { for } t \in \mathbb{R}\right\}
$$

of points, (x, y), in \mathbb{R}^{2} such that

$$
\begin{equation*}
x=2 \cos t \quad \text { and } \quad y=\sin t \tag{2}
\end{equation*}
$$

for $t \in \mathbb{R}$. It follows from the equations in (3) that $(x, y) \in \sigma(\mathbb{R})$ if and only if

$$
\frac{x^{2}}{4}+y^{2}=1
$$

which shows that $\sigma(\mathbb{R})$ is the ellipse pictured in Figure 1

Figure 1: Sketch of ellipse
(b) Find a tangent vector to the path at $t=\pi / 4$.

Solution: Compute the derivative of the path

$$
\sigma^{\prime}(t)=(-2 \sin t, \cos t), \quad \text { for all } t \in \mathbb{R}
$$

Then, a tangent vector to the path at $t=\pi / 4$ is

$$
\begin{equation*}
v=\sigma^{\prime}(\pi / 4)=\left(-\sqrt{2}, \frac{\sqrt{2}}{2}\right) \tag{3}
\end{equation*}
$$

(c) Give the parametric equations to the tangent line to the path at $t=\pi / 4$. Sketch the line.

Solution: The point on the path at time $t=\pi / 4$ has coordinates

$$
\sigma(\pi / 4)=\left(\sqrt{2}, \frac{\sqrt{2}}{2}\right)
$$

The line through this point in the direction of the vector v in (3) has parametric equations

$$
\left\{\begin{array}{l}
x=\sqrt{2}-\sqrt{2}\left(t-\frac{\pi}{4}\right) \\
y=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(t-\frac{\pi}{4}\right)
\end{array}\right.
$$

for $t \in \mathbb{R}$.
Sketch of the tangent line to the path σ and $\sigma(\pi / 4)$ is shown in Figure Figure 2

Figure 2: Tangent Line at $\sigma(\pi / 4)$
10. Let I denote an open interval, and $\sigma: I \rightarrow \mathbb{R}^{n}$ and $\gamma: I \rightarrow \mathbb{R}^{n}$ be differentiable paths on I. Define $h(t)=\sigma(t) \cdot \gamma(t)$ for all $t \in \mathbb{R}$. Show that $h: I \rightarrow \mathbb{R}$ is differentiable on I and verify that

$$
\begin{equation*}
h^{\prime}(t)=\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t), \quad \text { for all } t \in I \tag{4}
\end{equation*}
$$

Solution: Write $\sigma(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right.$ and $\gamma(t)=\left(y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right.$, for all $t \in I$, where $x_{i}: I \rightarrow \mathbb{R}$ and $y_{i}: I \rightarrow \mathbb{R}$ are differentiable on I,
for $i=1,2, \ldots, n$. Then,

$$
\begin{equation*}
h(t)=\sigma(t) \cdot \gamma(t)=\sum_{i=1}^{n} x_{i}(t) y_{i}(t), \quad \text { for all } t \in I \tag{5}
\end{equation*}
$$

It follows from (5) and the product rule in Calculus I that h is differentiable and

$$
\begin{align*}
h^{\prime}(t) & =\sum_{i=1}^{n}\left[x_{i}^{\prime}(t) y_{i}(t)+x_{i}(t) y_{i}^{\prime}(t)\right] \\
& =\sum_{i=1}^{n} x_{i}^{\prime}(t) y_{i}(t)+\sum_{i=1}^{n} x_{i}(t) y_{i}^{\prime}(t) \tag{6}\\
& =\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t),
\end{align*}
$$

for all $t \in I$. This establishes (4).
11. Let I denote an open interval, and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path satisfying $\|\sigma(t)\|=c$, a constant, for all $t \in I$. Show that, at any $t \in I, \sigma(t)$ is orthogonal to a tangent vector to the path at that t.

Solution: Put $h(t)=\|\sigma(t)\|^{2}=\sigma(t) \cdot \sigma(t)$ for all $t \in I$. Thus, if $\|\sigma(t)\|=c$ for all $t \in I$, it follows that

$$
\begin{equation*}
h(t)=c^{2}, \quad \text { for all } t \in I . \tag{7}
\end{equation*}
$$

Differentiating on both sides of (7) and using the result of Problem 10in (4) we obtain from (7) that

$$
2 \sigma^{\prime}(t) \cdot \sigma(t)=0 . \quad \text { for all } t \in I
$$

from which we get that

$$
\sigma^{\prime}(t) \cdot \sigma(t)=0 . \quad \text { for all } t \in I
$$

in other words, $\sigma(t)$ is orthogonal to a tangent vector to the path, $\sigma^{\prime}(t)$, at any $t \in I$.
12. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $\sigma(t)=\left(t^{1 / 3}, t\right)$ for all $t \in \mathbb{R}$. Show that σ is not differentiable at 0 .

Solution: For $h \neq 0$, compute

$$
\frac{1}{h}[\sigma(h)-\sigma(0)]=\left(h^{-2 / 3}, 1\right)
$$

so that

$$
\left\|\frac{1}{h}[\sigma(h)-\sigma(0)]\right\|^{2}=1+\frac{1}{|h|^{4 / 3}},
$$

and therefore

$$
\lim _{h \rightarrow 0}\left\|\frac{1}{h}[\sigma(h)-\sigma(0)]\right\|=+\infty,
$$

which shows that $\lim _{h \rightarrow 0} \frac{1}{h}[\sigma(h)-\sigma(0)]$ does not exist; hence, σ is not differentiable at 0 .

