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Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in ℝ3 to the plane
given by

4x− y − 3z = 12.

Solution: The point Po(3, 0, 0) is in the plane. Let

w =
−−→
PoP =

⎛⎝ 1
0
−7

⎞⎠

The vector n =

⎛⎝ 4
−1
−3

⎞⎠ is orthogonal to the plane. To find the

shortest distance, d, from P to the plane, we compute the norm of
the orthogonal projection of w onto n; that is,

d = ∥P
n̂
(w)∥,

where

n̂ =
1√
26

⎛⎝ 4
−1
−3

⎞⎠ ,

a unit vector in the direction of n, and

P
n̂
(w) = (w ⋅ n̂)n̂.

It then follows that
d = ∣w ⋅ n̂∣,

where w ⋅ n̂ =
1√
26

(4 + 21) =
25√
26
. Hence, d =

25
√

26

26
≈ 4.9. □

2. Compute the (shortest) distance from the point P (4, 0,−7) in ℝ3 to the line
given by the parametric equations⎧⎨⎩

x = −1 + 4t,
y = −7t,
z = 2− t.
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Solution: The point Po(−1, 0, 2) is on the line. The vector

v =

⎛⎝ 4
−7
−1

⎞⎠
gives the direction of the line. Put

w =
−−→
PoP =

⎛⎝ 5
0
−9

⎞⎠ .

The vectors v and w determine a parallelogram whose area is the norm
of v times the shortest distance, d, from P to the line determined by
v at Po. We then have that

area(P (v, w)) = ∥v∥d,

from which we get that

d =
area(P (v, w))

∥v∥
.

On the other hand,

area(P (v, w)) = ∥v × w∥,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
4 −7 −1
5 0 −9

∣∣∣∣∣∣ = 63̂i+ 31ĵ + 35k̂.

Thus, ∥v × w∥ =
√

(63)2 + (31)2 + (35)2 =
√

6155 and therefore

d =

√
6155√
66
≈ 9.7.

□

3. Compute the area of the triangle whose vertices in ℝ3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)
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Solution: Label the points Po(1, 1, 0), P1(2, 0, 1) and P2(0, 3, 1) and
define the vectors

v =
−−→
PoP1 =

⎛⎝ 1
−1

1

⎞⎠ and w =
−−→
PoP2 =

⎛⎝−1
2
1

⎞⎠ .

The area of the triangle determined by the points Po, P1 and P2 is
then half of the area of the parallelogram determined by the vectors
v and w. Thus,

area(△PoP1P2) =
1

2
∥v × w∥,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
1 −1 1
−1 2 1

∣∣∣∣∣∣ = −3̂i− 2ĵ + k̂.

Consequently, area(△PoP1P2) =
1

2

√
9 + 4 + 1 =

√
14

2
≈ 1.87. □

4. Let v and w be two vectors in ℝ3, and let � be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + �v is the same as that
determined by v and w.

Solution: The area of the parallelogram determined by v and w+�v
is

area(P (v, w + �v)) = ∥v × (w + �v)∥,

where
v × (w + �v) = v × w + �v × v = v × w.

Consequently, area(P (v, w + �v)) = ∥v × w∥ = area(P (v, w)). □

5. Let û denote a unit vector in ℝn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ ℝn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ ℝn

is a continuous map from ℝn to ℝn.
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Solution: Pû(v) = (v ⋅ û)û for all v ∈ ℝn. Consequently, for any
w, v ∈ ℝn,

Pû(w)− Pû(v) = (w ⋅ û)û− (v ⋅ û)û
= (w ⋅ û− v ⋅ û)û
= [(w − v) ⋅ û]û.

It then follows that

∥Pû(w)− Pû(v)∥ = ∣(w − v) ⋅ û∣,

since ∥û∥ = 1. Hence, by the Cauchy–Schwarz inequality,

∥Pû(w)− Pû(v)∥ ⩽ ∥w − v∥.

Applying the Squeeze Theorem we then get that

lim
∥w−v∥→0

∥Pû(w)− Pû(v)∥ = 0,

which shows that Pû is continuous at every v ∈ V . □

6. Define f : ℝ2 → ℝ by

f(x, y) =

⎧⎨⎩
x2y

x2 + y2
if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0).

Prove that f is continuous at (0, 0).

Solution: For (x, y) ∕= (0, 0)

∣f(x, y)∣ =
x2∣y∣
x2 + y2

⩽ ∣y∣,

since x2 ⩽ x2 + y2 for all (x, y) ∈ ℝ2. We then have that, for (x, y) ∕=
(0, 0),

∣f(x, y)∣ ⩽
√
x2 + y2,

which implies that

0 ⩽ ∣f(x, y)− f(0, 0)∣ ⩽ ∥(x, y)− (0, 0)∥,
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for (x, y) ∕= (0, 0). Thus, by the Squeeze Theorem,

lim
∥(x,y)−(0,0)∥→0

∣f(x, y)− f(0, 0)∣ = 0,

which shows that f is continuous at (0, 0). □

7. Show that

f(x, y) =

⎧⎨⎩
x2 − y2

x2 + y2
, (x, y) ∕= (0, 0)

0, (x, y) = (0, 0)

is not continuous at (0, 0).

Solution: Let �1(t) = (t, t) for all t ∈ ℝ and observe that

lim
t→0

�1(t) = (0, 0)

and
f(�(t)) = 0, for all t ∕= 0.

It then follows that
lim
t→0

f(�1(t)) = 0.

Thus, if f were continuous at (0, 0), we would have that

f(0, 0) = 0. (1)

On the other hand, if we let �2(t) = (t, 0), we would have that

lim
t→0

�2(t) = (0, 0)

and
f(�(t)) = 1, for all t ∕= 0.

Thus, if f were continuous at (0, 0), we would have that

f(0, 0) = 1,

which is in contradiction with (1). This contradiction shows that f
is not continuous at (0, 0). □
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8. Determine the value of L that would make the function

f(x, y) =

⎧⎨⎩
x sin

(
1

y

)
if y ∕= 0;

L otherwise ,

continuous at (0, 0). Is f : ℝ2 → ℝ continuous on ℝ2? Justify your answer.

Solution: Observe that, for y ∕= 0,

∣f(x, y)∣ =

∣∣∣∣x sin

(
1

y

)∣∣∣∣
= ∣x∣

∣∣∣∣sin(1

y

)∣∣∣∣
⩽ ∣x∣

⩽
√
x2 + y2.

It then follows that, for y ∕= 0,

0 ⩽ ∣f(x, y)∣ ⩽ ∥(x, y)∥.

Consequently, by the Squeeze Theorem,

lim
∥(x,y)∥→0

∣f(x, y)∣ = 0.

This suggests that we define L = 0. If this is the case,

lim
∥(x,y)∥→0

∣f(x, y)− f(0, 0)∣ = 0,

which shows that f is continuous at (0, 0) if L = 0.

Next, assume now that L = 0 in the definition of f . Then, for any
a ∕= 0, f fails for be continuous at (a, 0). To see why this is case, note
that for any y ∕= 0

f(a, y) = a sin

(
1

y

)
and the limit of sin

(
1

y

)
as y → 0 does not exist. □
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9. Let � : ℝ→ ℝ2 be the path given by

�(t) = (2 cos t, sin t), for t ∈ ℝ.

(a) Sketch the image of �.

Solution: The image of � is the set,

�(ℝ) = {(x, y) ∈ ℝ2 ∣ x = 2 cos t, y = sin t, for t ∈ ℝ},

of points, (x, y), in ℝ2 such that

x = 2 cos t and y = sin t, (2)

for t ∈ ℝ. It follows from the equations in (3) that (x, y) ∈ �(ℝ)
if and only if

x2

4
+ y2 = 1,

which shows that �(ℝ) is the ellipse pictured in Figure 1 □

y

1

x2

Figure 1: Sketch of ellipse

(b) Find a tangent vector to the path at t = �/4.

Solution: Compute the derivative of the path

�′(t) = (−2 sin t, cos t), for all t ∈ ℝ.

Then, a tangent vector to the path at t = �/4 is

v = �′(�/4) =

(
−
√

2,

√
2

2

)
. (3)

□
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(c) Give the parametric equations to the tangent line to the path at t = �/4.
Sketch the line.

Solution: The point on the path at time t = �/4 has coordinates

�(�/4) =

(
√

2,

√
2

2

)
.

The line through this point in the direction of the vector v in (3)
has parametric equations⎧⎨⎩

x =
√

2−
√

2
(
t− �

4

)
;

y =

√
2

2
+

√
2

2

(
t− �

4

)
,

for t ∈ ℝ.
Sketch of the tangent line to the path � and �(�/4) is shown in
Figure Figure 2 □

y

1

x2

XXXXXXXXXXXXX

Figure 2: Tangent Line at �(�/4)

10. Let I denote an open interval, and � : I → ℝn and  : I → ℝn be differentiable
paths on I. Define ℎ(t) = �(t) ⋅ (t) for all t ∈ ℝ. Show that ℎ : I → ℝ is
differentiable on I and verify that

ℎ′(t) = �′(t) ⋅ (t) + �(t) ⋅ ′(t), for all t ∈ I. (4)

Solution: Write �(t) = (x1(t), x2(t), . . . , xn(t) and (t) = (y1(t), y2(t), . . . , yn(t),
for all t ∈ I, where xi : I → ℝ and yi : I → ℝ are differentiable on I,
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for i = 1, 2, . . . , n. Then,

ℎ(t) = �(t) ⋅ (t) =
n∑

i=1

xi(t)yi(t), for all t ∈ I. (5)

It follows from (5) and the product rule in Calculus I that ℎ is differ-
entiable and

ℎ′(t) =
n∑

i=1

[x′i(t)yi(t) + xi(t)y
′
i(t)]

=
n∑

i=1

x′i(t)yi(t) +
n∑

i=1

xi(t)y
′
i(t)

= �′(t) ⋅ (t) + �(t) ⋅ ′(t),

(6)

for all t ∈ I. This establishes (4). □

11. Let I denote an open interval, and � : I → ℝn be a differentiable path satisfying
∥�(t)∥ = c, a constant, for all t ∈ I. Show that, at any t ∈ I, �(t) is orthogonal
to a tangent vector to the path at that t.

Solution: Put ℎ(t) = ∥�(t)∥2 = �(t) ⋅ �(t) for all t ∈ I. Thus, if
∥�(t)∥ = c for all t ∈ I, it follows that

ℎ(t) = c2, for all t ∈ I. (7)

Differentiating on both sides of (7) and using the result of Problem
10in (4) we obtain from (7) that

2�′(t) ⋅ �(t) = 0. for all t ∈ I

from which we get that

�′(t) ⋅ �(t) = 0. for all t ∈ I;

in other words, �(t) is orthogonal to a tangent vector to the path,
�′(t), at any t ∈ I. □
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12. Let � : ℝ → ℝ2 be given by �(t) = (t1/3, t) for all t ∈ ℝ. Show that � is not
differentiable at 0.

Solution: For ℎ ∕= 0, compute

1

ℎ
[�(ℎ)− �(0)] = (ℎ−2/3, 1),

so that ∥∥∥∥1

ℎ
[�(ℎ)− �(0)]

∥∥∥∥2 = 1 +
1

∣ℎ∣4/3
,

and therefore

lim
ℎ→0

∥∥∥∥1

ℎ
[�(ℎ)− �(0)]

∥∥∥∥ = +∞,

which shows that lim
ℎ→0

1

ℎ
[�(ℎ)− �(0)] does not exist; hence, � is not

differentiable at 0. □


