Review Problems for Exam 2

1. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?
2. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\|v\|$ for all $v \in \mathbb{R}^{n}$.
(a) Show that f is differentiable not differentiable at the origin.
(b) Let $U=\left\{v \in \mathbb{R}^{n} \mid v \neq 0\right\}$. Show that f is differentiable on the set U and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in U$. What is the gradient of f at u for all $x \in U$?
3. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \quad \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } 0<t<1
$$

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\|,
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
(d) Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.
4. Let U denote the set of all points in \mathbb{R}^{3} excluding the origin, $(0,0,0)$. Define the scalar field $f: U \rightarrow \mathbb{R}$ by $f(x, y, x)=\frac{1}{r}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ for all $(x, y, z) \in U$.
Show that f is differentiable in U. Compute ∇f and $\operatorname{div} \nabla f$.
5. Compute the arc length along the portion of the cycloid given by the parametric equations

$$
x=t-\sin t \quad \text { and } \quad y=1-\cos t, \quad \text { for } t \in \mathbb{R},
$$

from the point $(0,0)$ to the point $(2 \pi, 0)$.
6. Let C denote the boundary of the oriented triangle, $T=[(0,0)(1,0)(1,2)]$, in \mathbb{R}^{2}. Evaluate the line integral $\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x$.
7. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot n \mathrm{~d} s$.
8. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
9. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\}
$$

10. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (1) traversed in the positive sense.
(b) Use your result from part (a) and the Fundamental Theorem of Calculus to come up with a formula for computing the area of the region enclosed by the ellipse in (1).
11. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 11
12. Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the map from the $u v$-plane to the $x y$-plane given by

$$
\Phi\binom{u}{v}=\binom{2 u}{v^{2}} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2}
$$

and let T be the oriented triangle $[(0,0),(1,0),(1,1)]$ in the $u v$-plane.
(a) Show that Φ is differentiable and give a formula for its derivative, $D \Phi(u, v)$, at every point $\binom{u}{v}$ in \mathbb{R}^{2}.
(b) Give the image, R, of the triangle T under the map Φ, and sketch it in the $x y$-plane.
(c) Evaluate the integral $\iint_{R} d x d y$, where R is the region in the $x y$-plane obtained in part (b).
(d) Evaluate the integral $\iint_{T}|\operatorname{det}[D \Phi(u, v)]| d u d v$, where $\operatorname{det}[D \Phi(u, v)]$ denotes the determinant of the Jcobian matrix of Φ obtained in part (a). Compare the result obtained here with that obtained in part (c).

