Review Problems for Exam 2

- 1. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u): \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?
- 2. Define the scalar field $f \colon \mathbb{R}^n \to \mathbb{R}$ by f(v) = ||v|| for all $v \in \mathbb{R}^n$.
 - (a) Show that f is differentiable not differentiable at the origin.
 - (b) Let $U = \{v \in \mathbb{R}^n \mid v \neq 0\}$. Show that f is differentiable on the set U and compute the linear map $Df(u) \colon \mathbb{R}^n \to \mathbb{R}$ for all $u \in U$. What is the gradient of f at u for all $x \in U$?
- 3. Let U denote an open and convex subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g: [0,1] \to \mathbb{R}$ by

$$g(t) = f(x + t(y - x)) \quad \text{for } 0 \le t \le 1.$$

- (a) Explain why the function g is well defined.
- (b) Show that g is differentiable on (0, 1) and that

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x)$$
 for $0 < t < 1$.

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$f(y) - f(x) = D_{\widehat{u}}f(z) ||y - x||,$$

where \hat{u} is the unit vector in the direction of the vector y - x; that is, $\hat{u} = \frac{1}{\|y - x\|}(y - x).$

- (d) Prove that if U is an open and convex subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is differentiable on U with $\nabla f(v) = \mathbf{0}$ for all $v \in U$, then f must be a constant function.
- 4. Let U denote the set of all points in \mathbb{R}^3 excluding the origin, (0,0,0). Define the scalar field $f: U \to \mathbb{R}$ by $f(x, y, x) = \frac{1}{r}$, where $r = \sqrt{x^2 + y^2 + z^2}$ for all $(x, y, z) \in U$.

Show that f is differentiable in U. Compute ∇f and div ∇f .

Math 107. Rumbos

5. Compute the arc length along the portion of the cycloid given by the parametric equations

 $x = t - \sin t$ and $y = 1 - \cos t$, for $t \in \mathbb{R}$,

from the point (0,0) to the point $(2\pi,0)$.

- 6. Let *C* denote the boundary of the oriented triangle, T = [(0,0)(1,0)(1,2)], in \mathbb{R}^2 . Evaluate the line integral $\int_C \frac{x^2}{2} dy \frac{y^2}{2} dx$.
- 7. Let $F(x,y) = 2x \ \hat{i} y \ \hat{j}$ and R be the square in the xy-plane with vertices (0,0), (2,-1), (3,1) and (1,2). Evaluate $\oint_{\partial R} F \cdot n \, \mathrm{d}s$.
- 8. Evaluate the line integral $\int_{\partial R} (x^4 + y) \, dx + (2x y^4) \, dy$, where R is the rectangular region

$$R = \{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 3, \ -2 \leqslant y \leqslant 1 \},\$$

and ∂R is traversed in the counterclockwise sense.

9. Integrate the function given by $f(x, y) = xy^2$ over the region, R, defined by:

 $R = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, 0 \le y \le 4 - x^2\}.$

10. Let R denote the region in the plane defined by inside of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (1)$$

for a > 0 and b > 0.

- (a) Evaluate the line integral $\oint_{\partial R} x \, dy y \, dx$, where ∂R is the ellipse in (1) traversed in the positive sense.
- (b) Use your result from part (a) and the Fundamental Theorem of Calculus to come up with a formula for computing the area of the region enclosed by the ellipse in (1).
- 11. Evaluate the double integral $\int_R e^{-x^2} dx dy$, where R is the region in the xy-plane sketched in Figure 1.

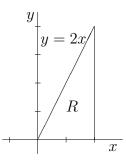


Figure 1: Sketch of Region R in Problem 11

12. Let $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote the map from the *uv*-plane to the *xy*-plane given by

$$\Phi\begin{pmatrix}u\\v\end{pmatrix} = \begin{pmatrix}2u\\v^2\end{pmatrix} \quad \text{for all} \quad \begin{pmatrix}u\\v\end{pmatrix} \in \mathbb{R}^2,$$

and let T be the oriented triangle [(0,0), (1,0), (1,1)] in the *uv*-plane.

- (a) Show that Φ is differentiable and give a formula for its derivative, $D\Phi(u, v)$, at every point $\begin{pmatrix} u \\ v \end{pmatrix}$ in \mathbb{R}^2 .
- (b) Give the image, R, of the triangle T under the map Φ , and sketch it in the xy-plane.
- (c) Evaluate the integral $\iint_R dxdy$, where R is the region in the xy-plane obtained in part (b).
- (d) Evaluate the integral $\iint_T |\det[D\Phi(u,v)]| \, dudv$, where $\det[D\Phi(u,v)]$ denotes the determinant of the Jcobian matrix of Φ obtained in part (a). Compare the result obtained here with that obtained in part (c).