Math 107. Rumbos Fall 2011 1

Solutions to Review Problems for Exam 2

1
1. Define the scalar field f: R" — R by f(v) = §HUH2 for all v € R™. Show that

f is differentiable on R™ and compute the linear map D f(u): R® — R for all
u € R™. What is the gradient of f at u for all z € R"?

Solution: Let u and w be any vector in R" and consider

flutw) = flutw|?

1 1
= Sl g
Thus,
1
flutw) = flu) —u-w=S|w|*

Consequently,

f(u+w) = fu) = u-w|

]l

1
= Sl

for w € R™ with |Jw|| # 0, from which we get that
i [t w) = flu) —u-w|

lw]—0 [|w]]

0,

and therefore f is differentiable at u with derivative map D f(u) given
by
Df(u)w =u-w forall we R".

Hence, V f(u) = u for all u € R". O

1
Alternate Solution: Write f(z1,xq,...,2,) = 5(1‘%—1—%% o a?)

for all (zq1,z,...,2,) € R™. Then, all the partial derivatives,

0
—f(xl,xg,...,:cn):xj, for j=1,2,...,n,

(‘31:]-
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are continuous. Thus, f is a C! map and is, therefore, differentiable
with derivative given by

Df(xy,x9,...,x5)h =V f(x1,29,...,2,) - h, forall h € R"

where V f(z1,x9,...,2,) = (x1,29,...,2,) for all (z1,29,...,2,) €
R™. OJ

2. Define the scalar field f: R™ — R by f(v) = ||v|| for all v € R™.

(a) Show that f is differentiable not differentiable at the origin.

Solution: Arguing by contradiction, assume that f is differen-
tiable at the origin. Then, there exists a linear transformation,
T: R"™ — R such that

f(w) =T(w) + Eo(w), (1)
for |Jw|| small, where

()]

lwl—0  [Jw]|

—0. 2)

Take w = te;, where e; is one of the standard basis vectors. It
then follows from (1) that

t] = tT'(e;) + Eo(te;),

for t € R with |¢| sufficiently small. Thus, if ¢ # 0 and |t is
sufficiently small,

]
t
Observe that, by (2),

=T(ej) + %Eo(tej).

1
11_1)18 ;Eo(t€j> =0.

Hence,

ot
I

which is impossible since Pr%? does not exist. Consequently,
—
f(v) = ||v|| is not differentiable at the origin. O
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(b) Let U = {v € R" | v # 0}. Show that f is differentiable on the set U
and compute the linear map D f(u): R™ — R for all u € U. What is the
gradient of f at u for all x € U?

Solution: For v = (x1,x9,...,x,) in R", write

f(v):f(xl,xg,...,xn):\/x§+x3+...+x%7

and observe that if (xy,zs,...,2,) € U, then 22+ a3+ --+22 # 0
so that the partial derivatives
6f Z;

—\r1,T2,...,T =
( ) ’ ) n) \/,’L’%—Fx%—l——l—xij

=1,2,...,n
aZL'] J (] s 10y

exist in U and are continuous there. Therefore, f is a C'! map in
U and it is therefore differentiable in U.
The gradient of f in U is then given by

1
N R

Vfi(xy, z, ... x,)

($17I27 s 7$n)7

or
1
Vf(u) = Tl u, foralluel.

We therefore have that the derivative map of f at v € U is given
by

Df(u)h h, forall h € R".

= — U -
il

O

3. Let U denote an open and convex subset of R™. Suppose that f: U — R is
differentiable at every x € U. Fix z and y in U, and define g: [0,1] — R by

g(t) = flx+tly—2x)) for 0<t<1.

(a) Explain why the function g is well defined.

Answer: Since U is convex, for any z,y € U, z +t(y —x) € U
for all ¢t € [0,1]. Thus, f(z + t(y — x)) is defined for all ¢ € [0, 1],
because f is defined on U. U

(b) Show that ¢ is differentiable on (0, 1) and that

gty =Vfx+tly—x) (y—x) for 0<t<1.
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Solution: It follows from the Chain Rule that the composition
g=foo:[0,1] = R, where o: [0,1] — R" is the path given by

o(t)=x+tly—=x), foralltel0,1],
is differentiable and
g(t)=Vf(o(t) o'(t), foralte(0,1),

where
o(t)y=y—=x, forallt.
Consequently, we get that
gt)=Vflx+tly—=z)) - (y—=x) for 0<t <1

OJ

(c¢) Use the Mean Value Theorem for derivatives to show that there exists a
point z is the line segment connecting = to y such that

f(y) = f(x) = Daf(2)lly — |, (3)
where @ is the unit vector in the direction of the vector y — x; that is,
N 1
ut=——(y—x).

ly — |

Solution: The mean value theorem implies that there exists 7 €
(0,1) such that

9(1) = g(0) = ¢'(7)(1 - 0),
so that
fy) = f@)=Vfx+7ly—2)) (y—2). (4)
1
|y — ]

Put z=2+7(y—2) and u = (y —x). We can then write

(4) as

1) - 1) = (V1) =) -l

= (Vi) -u) |y — =],
which yields (3). O
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(d) Prove that if U is an open and convex subset of R" and f: U — R is
differentiable on U with Vf(v) = 0 for all v € U, then f must be a
constant function.

Solution: Fix x, € U. Then, for any = € U, the formula in (3)
yields
f(@) = f2o) = Daf(2)||lz — o, ()
where Dyf(z) = Vf(z)-u = 0 by the assumption. Hence, it
follows from (5) that
flz) = f(z,), forall x € U;

in other words, f is constant in U. 0J

4. Let U denote the set of all points in R?® excluding the origin, (0,0,0). Define

1

the scalar field f: U — R by f(z,y,x) = —, where r = y/22 + y? + 22 for all
r

(x,y,2) € U.

Show that f is differentiable in U. Compute V f and divV f.

1
Solution: Write f(z,y,2z) = g(r), where g(r) = —, for r # 0,
r
and r = ||(x,y, 2)| for all (x,y,2) € R3. Tt follows from the result of
Problem 2b in this review sheet that r is differentiable for (x,y, z € U,
and

1
Vr = —(l’,y,Z), for all (I,y,Z) el
r

Next, note that ¢ is differentiable for r # 0 and
1
g(r)=—=, forall r#0.
r

Since f is the composition of f and r, it follows by the Chain Rule
that f is differentiable for (z,y, z) € U, and

1 1
vf(l',y, Z) = g'(r)Vr - _7’_2 . ;(xayv Z), for all (xaya Z) S U7
or

1
Vi(x,y,2) = ¢ (r)Vr = —=(x,y,2),  forall (z,y,2) € U.

Next, compute the divergence of V f:

westen - (2) -2 (5)-2(2). ©
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where 5
3(2) _ 7"3—17-37“2%
Ox \r3 76
rd— - 37“2E
_ r
r6 ’
so that 5 ) )
T r¢ — 3z
~Z (Y = 7
ox <r3> 7o (7)
Similarly,
0 [x r? — 3y?
(2 = 8
oy <r3> ro (®)
and
0 /x B r? — 322 9)
0z (ﬁ) N r5

Substituting (7)—(9) into (6) then yields

3r? — 3(2* + y* + 2%)

= = 0.

divV f(z,y,z) =

O

5. Compute the arc length along the portion of the cycloid given by the parametric
equations
x=t—sint and y=1-—cost, for teR,

from the point (0,0) to the point (27,0).
Solution: Put

o(t) = (t —sint, 1 —cost), for all ¢t € [0,2n].

Then,
o'(t) = (1 — cost, sint), for all t € (0,27);
so that
') = /(1 —cost)?+sin’t
— /1 —2cost + cos?t +sin® ¢t (10)

= V2 —2cost.
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Next, use the trigonometric identity

t
2 sin’ <§) =1 — cost,

to obtain from the calculations in (10) that

ol = yfasin® ()

(11)

for t € (0,27). Now, since since 0 < = < 7 for 0 < ¢t < 27, it follows

that
t
sin (5) >0, fortel0,2n].

We then obtain from (11) that
t
lo’(t)|] = 2sin (5) , forallte|0,2n].

Consequently, the arc length along the portion of the cycloid parametrized
by o(t) for 0 <t < 27 is

/02ﬂ||a'(t)y| at = /jﬂzsm (g) dt
el

= 8.
0
6. Let C denote the boundary of the oriented triangle, 7' = [(0,0)(1,0)(1,2)], in
2 2
R2. Evaluate the line integral / l dy — L
o2 2
72 %
Solution: First observe that 5 dy — 5 dx is the flux of the
c

vector field

F(z,y) = <%2%2>
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across the boundary of 7. Thus, applying the divergence form of
Fundamental Theorem of Calculus,

/ F~ﬁds://divF dxdy,
T T
we obtain that

2 2
/ZE— dy—y—dx = //(x—i—y)dxdy
c 2 2 T
1 2x
= // (x +vy) dydx
o Jo
1 27 2z
Y
= a:y—i——] dx
13
1
= /4w2dx,
0

x? y? 4
Toay-Ldar==.
/02 Y7 T

so that

O

7. Let F(x,y) = 2x i— Y jy\ and R be the square in the zy-plane with vertices

(0,0), (2,-1), (3,1) and (1,2). Evaluatef F-n ds.
OR

Solution: Apply the divergence form of the Fundamental Theorem

of Calculus to get
f F~ﬁds:// divF dxdy,
OR R

divF(z,y) =2—-1=1,

j{F-ﬁds = // dzdy
OR R

= area(R).

where

so that
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Figure 1: Sketch of Region R in Problem 7

To find the area of the region R, shown in Figure 1, observe that R is

a parallelogram determined by the vectors v =2 i—j and w = P42 J.
Thus,
area(R) = [|[v X w|| = 5.

It the follows that

7{ F-n ds:// dr dy = 5.
OR R

8. Evaluate the line integral / (z* +y) do+ 2z —y*) dy, where R is the
OR

O

rectangular region
R={(z,y) eR*|-1<2<3, —2<y<1},
and JR is traversed in the counterclockwise sense.

Solution: Apply the Green’s Theorem form of Fundamental Theo-
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rem of Calculus to get
/ (* +y) do + 2z —y*) dy = // (2(2:1: —yt) — 2(964 + y) dxdy
AR r \ 0% Ay
= // (2—1) dzdy
R
= // dxdy
R

= area(R)
= 12
O
9. Integrate the function given by f(z,y) = zy? over the region, R, defined by:
R={(z,y) eR*|2>0,0<y<4— 2%}

Solution: The region, R, is sketched in Figure 2. We evaluate the

Figure 2: Sketch of Region R in Problem 9
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double integral, / / zy? dz dy, as an iterated integral
R

2 pd—2?
//ng de dy = // ry? dy dz
R 0o Jo
2 rd—a?
= // zy? dy dx
o Jo
2 gy
a /0 3

1 2
= —/ r(4 —2*)? du.
3 Jo

4—g2

dx

0

To evaluate the last integral, make the change of variables: u = 4—a2.

We then have that du = —2z dx and

2 pd—z?
//ng de dy = // ry? dy dz
R o Jo
1 0
= ——/u3 du
6 Jy
4
/u3 du.
0

4 32

2
xy? dedy = —=—.
//R 24 3

10. Let R denote the region in the plane defined by inside of the ellipse

=

Thus,

IQ y2
a2 E=h

for a > 0 and b > 0.

11

(12)

(a) Evaluate the line integral % x dy — y dz, where OR is the ellipse in (12)

OR
traversed in the positive sense.
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Figure 3: Sketch of ellipse

Solution: A sketch of the ellipse is shown in Figure 3 for the case
a <b.
A parametrization of the ellipse is given by

x =acost, y=bsint, for 0<t < 2m.

We then have that do = —asint dt and dy = bcost dt. Therefore

2
J(I{xdy—ydx = / l[acost -bcost — bsint - (—acost)] dt
oR 0
2w
= / [abcos®t + absin®t] dt
0

2m
= ab/ (cos®t + absin®t) dt
0

27
= ab / dt
0

= 2mab.
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(b) Use your result from part (a) and the Fundamental Theorem of Calculus
to come up with a formula for computing the area of the region enclosed
by the ellipse in (12).
Solution: Let F(x,y) =x i+vy j. Then,

j{ xdy—ydx:j{ F-n ds.
OR OR

Thus, by Green’s Theorem in divergence form,

j{ xdy—ydx://divF dz dy,
OR R

divF (z,y) = %(:c) + 2(y) =2.

where

Consequently,
j{ xdy—ydsz// dz dy = 2 area(R).
OR R
It then follows that
1
area(R) = —j{ x dy —y dx.
2 Jor

Thus,
area(R) = mab,

by the result in part (a). O

11. Evaluate the double integral / e dx dy, where R is the region in the xy—
plane sketched in Figure 4.

Solution: Compute

) 2 2x )
// e dedy = // e " dydx
R o Jo
2

= /2xe”‘”2 dx
0
-],
= |—e
0



Math 107. Rumbos Fall 2011 14

Figure 4: Sketch of Region R in Problem 11

12. Let ®: R? — R? denote the map from the uv-plane to the xy-plane given by

¢>(“) _ (23) for all (u) € R,

v v v

and let T be the oriented triangle [(0,0), (1,0), (1,1)] in the uv—plane.

(a) Show that & is differentiable and give a formula for its derivative, D®(u, v),
at every point (Z) in R?.

Solution: Write
) (u> = ( f(w,) ) for all (u) € R?,
v g(u,v) v

where f(u,v) = 2u and g(u,v) = v? for all (Z) € R?. Observe

that the partial derivatives of f and g exist and are given by

of af

%(U,’U) =2, %(U7U) =0
9y _ 9y _
9 (u,v) =0, 9 (u,v) = 2v.

Note that the partial derivatives of f and g are continuous. There-
fore, ® is a C'* map. Hence, ® is differentiable on R? and its deriva-
tive map at (u,v), for any (u,v) € R? is given by multiplication
by the Jacobian matrix

D¢mﬂo:(g i);
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that is,

oo (2)-(2 2) (1) (2)

forall<Z)€R2. 0
(b) Give the image, R, of the triangle 7" under the map ®, and sketch it in the
xy—plane.

Solution: The image of T" under ® is the set
O(T) = {(z,y) € R?*| 2 =2u,y=1% for some (u,v)e T}
= {(r,y) eR?|0< 2 <2, 0<y<a?/4}.
A sketch of R = ®(T") is shown in Figure 5. O

X

Figure 5: Sketch of Region ®(T')

(c) Evaluate the integral / / dxdy, where R is the region in the zy-plane
R
obtained in part (b).

Solution: Compute by means of iterated integrals

2 pr?/4
//dxdy = // dy dz

R o Jo
2,2

= /x—dx
o 4
Bl
- |12],

Wl N



Math 107. Rumbos Fall 2011 16

0
(d) Evaluate the integral / | det[D®(u, v)]| dudv, where det[D®(u,v)] de-
T

notes the determinant of the Jacobian matrix of ® obtained in part (a).
Compare the result obtained here with that obtained in part (c).

Solution: Compute det[D®(u,v)] to get

det[D®(u,v)] = 4w.

/ | det[DP(u,v)]|dudv = // 4|v| dudv,

where the region 7', in the wv-plane is sketched in Figure 6.
Observe that, in that region, v > 0, so that

so that

u

Figure 6: Sketch of Region T’

/ | det[DP(u, v)]|dudv = // 4v dudv,
T T

Compute by means of iterated integrals

1 u
/ | det[D®(u, v)]|dudv = //41} dvdu
T o Jo
1
= /2u2 du
0

2

37

which is the same result as that obtained in part (c). O



