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Solutions to Review Problems for Exam 2

1. Define the scalar field f : ℝn → ℝ by f(v) =
1

2
∥v∥2 for all v ∈ ℝn. Show that

f is differentiable on ℝn and compute the linear map Df(u) : ℝn → ℝ for all
u ∈ ℝn. What is the gradient of f at u for all x ∈ ℝn?

Solution: Let u and w be any vector in ℝn and consider

f(u+ w) =
1

2
∥u+ w∥2

=
1

2
(u+ w) ⋅ (u+ w)

=
1

2
u ⋅ u+ u ⋅ w +

1

2
w ⋅ w

=
1

2
∥u∥2 + u ⋅ w +

1

2
∥w∥2.

Thus,

f(u+ w)− f(u)− u ⋅ w =
1

2
∥w∥2.

Consequently,

∣f(u+ w)− f(u)− u ⋅ w∣
∥w∥

=
1

2
∥w∥,

for w ∈ ℝn with ∥w∥ ∕= 0, from which we get that

lim
∥w∥→0

∣f(u+ w)− f(u)− u ⋅ w∣
∥w∥

= 0,

and therefore f is differentiable at u with derivative map Df(u) given
by

Df(u)w = u ⋅ w for all w ∈ ℝn.

Hence, ∇f(u) = u for all u ∈ ℝn. □

Alternate Solution: Write f(x1, x2, . . . , xn) =
1

2
(x21 +x22 + ⋅ ⋅ ⋅+x2n)

for all (x1, x2, . . . , xn) ∈ ℝn. Then, all the partial derivatives,

∂f

∂xj
(x1, x2, . . . , xn) = xj, for j = 1, 2, . . . , n,
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are continuous. Thus, f is a C1 map and is, therefore, differentiable
with derivative given by

Df(x1, x2, . . . , xn)ℎ = ∇f(x1, x2, . . . , xn) ⋅ ℎ, for all ℎ ∈ ℝn,

where ∇f(x1, x2, . . . , xn) = (x1, x2, . . . , xn) for all (x1, x2, . . . , xn) ∈
ℝn. □

2. Define the scalar field f : ℝn → ℝ by f(v) = ∥v∥ for all v ∈ ℝn.

(a) Show that f is differentiable not differentiable at the origin.

Solution: Arguing by contradiction, assume that f is differen-
tiable at the origin. Then, there exists a linear transformation,
T : ℝn → ℝ such that

f(w) = T (w) + Eo(w), (1)

for ∥w∥ small, where

lim
∥w∥→0

∥Eo(w)∥
∥w∥

= 0. (2)

Take w = tej, where ej is one of the standard basis vectors. It
then follows from (1) that

∣t∣ = tT (ej) + Eo(tej),

for t ∈ ℝ with ∣t∣ sufficiently small. Thus, if t ∕= 0 and ∣t∣ is
sufficiently small,

∣t∣
t

= T (ej) +
1

t
Eo(tej).

Observe that, by (2),

lim
t→0

1

t
Eo(tej) = 0.

Hence,

lim
t→0

∣t∣
t

= T (ej),

which is impossible since lim
t→0

∣t∣
t

does not exist. Consequently,

f(v) = ∥v∥ is not differentiable at the origin. □
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(b) Let U = {v ∈ ℝn ∣ v ∕= 0}. Show that f is differentiable on the set U
and compute the linear map Df(u) : ℝn → ℝ for all u ∈ U . What is the
gradient of f at u for all x ∈ U?

Solution: For v = (x1, x2, . . . , xn) in ℝn, write

f(v) = f(x1, x2, . . . , xn) =
√
x21 + x22 + ⋅ ⋅ ⋅+ x2n,

and observe that if (x1, x2, . . . , xn) ∈ U , then x21+x22+ ⋅ ⋅ ⋅+x2n ∕= 0
so that the partial derivatives

∂f

∂xj
(x1, x2, . . . , xn) =

xj√
x21 + x22 + ⋅ ⋅ ⋅+ x2n

, j = 1, 2, . . . , n,

exist in U and are continuous there. Therefore, f is a C1 map in
U and it is therefore differentiable in U .
The gradient of f in U is then given by

∇f(x1, x2, . . . , xn) =
1√

x21 + x22 + ⋅ ⋅ ⋅+ x2n
(x1, x2, . . . , xn),

or

∇f(u) =
1

∥u∥
u, for all u ∈ U.

We therefore have that the derivative map of f at u ∈ U is given
by

Df(u)ℎ =
1

∥u∥
u ⋅ ℎ, for all ℎ ∈ ℝn.

□

3. Let U denote an open and convex subset of ℝn. Suppose that f : U → ℝ is
differentiable at every x ∈ U . Fix x and y in U , and define g : [0, 1]→ ℝ by

g(t) = f(x+ t(y − x)) for 0 ⩽ t ⩽ 1.

(a) Explain why the function g is well defined.

Answer: Since U is convex, for any x, y ∈ U , x + t(y − x) ∈ U
for all t ∈ [0, 1]. Thus, f(x+ t(y − x)) is defined for all t ∈ [0, 1],
because f is defined on U . □

(b) Show that g is differentiable on (0, 1) and that

g′(t) = ∇f(x+ t(y − x)) ⋅ (y − x) for 0 < t < 1.
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Solution: It follows from the Chain Rule that the composition
g = f ∘ � : [0, 1]→ ℝ, where � : [0, 1]→ ℝn is the path given by

�(t) = x+ t(y − x), for all t ∈ [0, 1],

is differentiable and

g′(t) = ∇f(�(t)) ⋅ �′(t), for all t ∈ (0, 1),

where
�(t) = y − x, for all t.

Consequently, we get that

g′(t) = ∇f(x+ t(y − x)) ⋅ (y − x) for 0 < t < 1.

□

(c) Use the Mean Value Theorem for derivatives to show that there exists a
point z is the line segment connecting x to y such that

f(y)− f(x) = Dûf(z)∥y − x∥, (3)

where û is the unit vector in the direction of the vector y − x; that is,

û =
1

∥y − x∥
(y − x).

Solution: The mean value theorem implies that there exists � ∈
(0, 1) such that

g(1)− g(0) = g′(�)(1− 0),

so that
f(y)− f(x) = ∇f(x+ �(y − x)) ⋅ (y − x). (4)

Put z = x+ �(y−x) and û =
1

∥y − x∥
(y−x). We can then write

(4) as

f(y)− f(x) =

(
∇f(z) ⋅ 1

∥y − x∥
(y − x)

)
∥y − x∥

= (∇f(z) ⋅ û) ∥y − x∥,

which yields (3). □
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(d) Prove that if U is an open and convex subset of ℝn, and f : U → ℝ is
differentiable on U with ∇f(v) = 0 for all v ∈ U , then f must be a
constant function.

Solution: Fix xo ∈ U . Then, for any x ∈ U , the formula in (3)
yields

f(x)− f(xo) = Dûf(z)∥x− xo∥, (5)

where Dûf(z) = ∇f(z) ⋅ û = 0 by the assumption. Hence, it
follows from (5) that

f(x) = f(xo), for all x ∈ U ;

in other words, f is constant in U . □

4. Let U denote the set of all points in ℝ3 excluding the origin, (0, 0, 0). Define

the scalar field f : U → ℝ by f(x, y, x) =
1

r
, where r =

√
x2 + y2 + z2 for all

(x, y, z) ∈ U .

Show that f is differentiable in U . Compute ∇f and div∇f .

Solution: Write f(x, y, z) = g(r), where g(r) =
1

r
, for r ∕= 0,

and r = ∥(x, y, z)∥ for all (x, y, z) ∈ ℝ3. It follows from the result of
Problem 2b in this review sheet that r is differentiable for (x, y, z ∈ U ,
and

∇r =
1

r
(x, y, z), for all (x, y, z) ∈ U.

Next, note that g is differentiable for r ∕= 0 and

g′(r) = − 1

r2
, for all r ∕= 0.

Since f is the composition of f and r, it follows by the Chain Rule
that f is differentiable for (x, y, z) ∈ U , and

∇f(x, y, z) = g′(r)∇r = − 1

r2
⋅ 1

r
(x, y, z), for all (x, y, z) ∈ U,

or

∇f(x, y, z) = g′(r)∇r = − 1

r3
(x, y, z), for all (x, y, z) ∈ U.

Next, compute the divergence of ∇f :

div∇f(x, y, z) = − ∂

∂x

( x
r3

)
− ∂

∂y

( y
r3

)
− ∂

∂z

( z
r3

)
, (6)
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where

∂

∂x

( x
r3

)
=

r3 − x ⋅ 3r2 ∂r
∂x

r6

=
r3 − x ⋅ 3r2x

r
r6

,

so that
∂

∂x

( x
r3

)
=

r2 − 3x2

r5
. (7)

Similarly,
∂

∂y

( x
r3

)
=

r2 − 3y2

r5
, (8)

and
∂

∂z

( x
r3

)
=

r2 − 3z2

r5
. (9)

Substituting (7)–(9) into (6) then yields

div∇f(x, y, z) = −3r2 − 3(x2 + y2 + z2)

r5
= 0.

□

5. Compute the arc length along the portion of the cycloid given by the parametric
equations

x = t− sin t and y = 1− cos t, for t ∈ ℝ,

from the point (0, 0) to the point (2�, 0).

Solution: Put

�(t) = (t− sin t, 1− cos t), for all t ∈ [0, 2�].

Then,
�′(t) = (1− cos t, sin t), for all t ∈ (0, 2�);

so that
∥�′(t)∥ =

√
(1− cos t)2 + sin2 t

=
√

1− 2 cos t+ cos2 t+ sin2 t

=
√

2− 2 cos t.

(10)



Math 107. Rumbos Fall 2011 7

Next, use the trigonometric identity

2 sin2

(
t

2

)
= 1− cos t,

to obtain from the calculations in (10) that

∥�′(t)∥ =

√
4 sin2

(
t

2

)

= 2

∣∣∣∣sin( t2
)∣∣∣∣ ,

(11)

for t ∈ (0, 2�). Now, since since 0 ⩽
t

2
⩽ � for 0 ⩽ t ⩽ 2�, it follows

that

sin

(
t

2

)
⩾ 0, for t ∈ [0, 2�].

We then obtain from (11) that

∥�′(t)∥ = 2 sin

(
t

2

)
, for all t ∈ [0, 2�].

Consequently, the arc length along the portion of the cycloid parametrized
by �(t) for 0 ⩽ t ⩽ 2� is∫ 2�

0

∥�′(t)∥ dt =

∫ 2�

0

2 sin

(
t

2

)
dt

=

[
−4 cos

(
t

2

)]2�
0

= 8.

□

6. Let C denote the boundary of the oriented triangle, T = [(0, 0)(1, 0)(1, 2)], in

ℝ2. Evaluate the line integral

∫
C

x2

2
dy − y2

2
dx.

Solution: First observe that

∫
C

x2

2
dy − y2

2
dx is the flux of the

vector field

F (x, y) =

(
x2

2
,
y2

2

)
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across the boundary of T . Thus, applying the divergence form of
Fundamental Theorem of Calculus,∫

∂T

F ⋅ n̂ ds =

∫∫
T

divF dxdy,

we obtain that∫
C

x2

2
dy − y2

2
dx =

∫∫
T

(x+ y) dxdy

=

∫ 1

0

∫ 2x

0

(x+ y) dydx

=

∫ 1

0

[
xy +

y2

2

]2x
0

dx

=

∫ 1

0

4x2dx,

so that ∫
C

x2

2
dy − y2

2
dx =

4

3
.

□

7. Let F (x, y) = 2x î − y ĵ and R be the square in the xy–plane with vertices

(0, 0), (2,−1), (3, 1) and (1, 2). Evaluate

∮
∂R

F ⋅ n ds.

Solution: Apply the divergence form of the Fundamental Theorem
of Calculus to get ∮

∂R

F ⋅ n̂ ds =

∫∫
R

divF dxdy,

where
divF (x, y) = 2− 1 = 1,

so that ∮
∂R

F ⋅ n̂ ds =

∫∫
R

dxdy

= area(R).
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Figure 1: Sketch of Region R in Problem 7

To find the area of the region R, shown in Figure 1, observe that R is
a parallelogram determined by the vectors v = 2 î− ĵ and w = î+2 ĵ.
Thus,

area(R) = ∥v × w∥ = 5.

It the follows that∮
∂R

F ⋅ n ds =

∫∫
R

dx dy = 5.

□

8. Evaluate the line integral

∫
∂R

(x4 + y) dx + (2x − y4) dy, where R is the

rectangular region

R = {(x, y) ∈ ℝ2 ∣ −1 ⩽ x ⩽ 3, −2 ⩽ y ⩽ 1},

and ∂R is traversed in the counterclockwise sense.

Solution: Apply the Green’s Theorem form of Fundamental Theo-
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rem of Calculus to get∫
∂R

(x4 + y) dx+ (2x− y4) dy =

∫∫
R

(
∂

∂x
(2x− y4)− ∂

∂y
(x4 + y

)
dxdy

=

∫∫
R

(2− 1) dxdy

=

∫∫
R

dxdy

= area(R)

= 12.

□

9. Integrate the function given by f(x, y) = xy2 over the region, R, defined by:

R = {(x, y) ∈ ℝ2 ∣ x ⩾ 0, 0 ⩽ y ⩽ 4− x2}.

Solution: The region, R, is sketched in Figure 2. We evaluate the

x

y

R

y = 4− x2

Figure 2: Sketch of Region R in Problem 9
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double integral,

∫∫
R

xy2 dx dy, as an iterated integral

∫∫
R

xy2 dx dy =

∫ 2

0

∫ 4−x2

0

xy2 dy dx

=

∫ 2

0

∫ 4−x2

0

xy2 dy dx

=

∫ 2

0

xy3

3

∣∣∣4−x2
0

dx

=
1

3

∫ 2

0

x(4− x2)3 dx.

To evaluate the last integral, make the change of variables: u = 4−x2.
We then have that du = −2x dx and∫∫

R

xy2 dx dy =

∫ 2

0

∫ 4−x2

0

xy2 dy dx

= −1

6

∫ 0

4

u3 du

=
1

6

∫ 4

0

u3 du.

Thus, ∫∫
R

xy2 dx dy =
44

24
=

32

3
.

□

10. Let R denote the region in the plane defined by inside of the ellipse

x2

a2
+
y2

b2
= 1, (12)

for a > 0 and b > 0.

(a) Evaluate the line integral

∮
∂R

x dy − y dx, where ∂R is the ellipse in (12)

traversed in the positive sense.
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y

b

xa

Figure 3: Sketch of ellipse

Solution: A sketch of the ellipse is shown in Figure 3 for the case
a < b.
A parametrization of the ellipse is given by

x = a cos t, y = b sin t, for 0 ⩽ t ⩽ 2�.

We then have that dx = −a sin t dt and dy = b cos t dt. Therefore∮
∂R

x dy − y dx =

∫ 2�

0

[a cos t ⋅ b cos t− b sin t ⋅ (−a cos t)] dt

=

∫ 2�

0

[ab cos2 t+ ab sin2 t] dt

= ab

∫ 2�

0

(cos2 t+ ab sin2 t) dt

= ab

∫ 2�

0

dt

= 2�ab.

□
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(b) Use your result from part (a) and the Fundamental Theorem of Calculus
to come up with a formula for computing the area of the region enclosed
by the ellipse in (12).

Solution: Let F (x, y) = x î+ y ĵ. Then,∮
∂R

x dy − y dx =

∮
∂R

F ⋅ n ds.

Thus, by Green’s Theorem in divergence form,∮
∂R

x dy − y dx =

∫∫
R

divF dx dy,

where

divF (x, y) =
∂

∂x
(x) +

∂

∂y
(y) = 2.

Consequently,∮
∂R

x dy − y dx = 2

∫∫
R

dx dy = 2 area(R).

It then follows that

area(R) =
1

2

∮
∂R

x dy − y dx.

Thus,
area(R) = �ab,

by the result in part (a). □

11. Evaluate the double integral

∫
R

e−x
2

dx dy, where R is the region in the xy–

plane sketched in Figure 4.

Solution: Compute∫∫
R

e−x
2

dx dy =

∫ 2

0

∫ 2x

0

e−x
2

dy dx

=

∫ 2

0

2xe−x
2

dx

=
[
−e−x2

]2
0

= 1− e−4.
□
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x

y

R

�
�
�
�
�
�
�
�
�y = 2x

Figure 4: Sketch of Region R in Problem 11

12. Let Φ: ℝ2 → ℝ2 denote the map from the uv–plane to the xy–plane given by

Φ

(
u
v

)
=

(
2u
v2

)
for all

(
u
v

)
∈ ℝ2,

and let T be the oriented triangle [(0, 0), (1, 0), (1, 1)] in the uv–plane.

(a) Show that Φ is differentiable and give a formula for its derivative, DΦ(u, v),

at every point

(
u
v

)
in ℝ2.

Solution: Write

Φ

(
u
v

)
=

(
f(u, v)
g(u, v)

)
for all

(
u
v

)
∈ ℝ2,

where f(u, v) = 2u and g(u, v) = v2 for all

(
u
v

)
∈ ℝ2. Observe

that the partial derivatives of f and g exist and are given by

∂f

∂u
(u, v) = 2,

∂f

∂v
(u, v) = 0

∂g

∂u
(u, v) = 0,

∂g

∂v
(u, v) = 2v.

Note that the partial derivatives of f and g are continuous. There-
fore, Φ is a C1 map. Hence, Φ is differentiable on ℝ2 and its deriva-
tive map at (u, v), for any (u, v) ∈ ℝ2 is given by multiplication
by the Jacobian matrix

DΦ(u, v) =

(
2 0
0 2v

)
;
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that is,

DΦ(u, v)

(
ℎ
k

)
=

(
2 0
0 2v

)(
ℎ
k

)
=

(
2ℎ
2vk

)
for all

(
ℎ
k

)
∈ ℝ2. □

(b) Give the image, R, of the triangle T under the map Φ, and sketch it in the
xy–plane.

Solution: The image of T under Φ is the set

Φ(T ) = {(x, y) ∈ ℝ2 ∣ x = 2u, y = v2, for some (u, v) ∈ T}

= {(x, y) ∈ ℝ2 ∣ 0 ⩽ x ⩽ 2, 0 ⩽ y ⩽ x2/4}.

A sketch of R = Φ(T ) is shown in Figure 5. □

x

y

R
y = x2/4

Figure 5: Sketch of Region Φ(T )

(c) Evaluate the integral

∫∫
R

dxdy, where R is the region in the xy–plane

obtained in part (b).

Solution: Compute by means of iterated integrals∫∫
R

dxdy =

∫ 2

0

∫ x2/4

0

dy dx

=

∫ 2

0

x2

4
dx

=

[
x3

12

]2
0

=
2

3
.
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□

(d) Evaluate the integral

∫∫
T

∣ det[DΦ(u, v)]∣ dudv, where det[DΦ(u, v)] de-

notes the determinant of the Jacobian matrix of Φ obtained in part (a).
Compare the result obtained here with that obtained in part (c).

Solution: Compute det[DΦ(u, v)] to get

det[DΦ(u, v)] = 4v.

so that ∫∫
T

∣ det[DΦ(u, v)]∣dudv =

∫∫
T

4∣v∣ dudv,

where the region T , in the uv–plane is sketched in Figure 6.
Observe that, in that region, v ⩾ 0, so that

u

v

T
�
�
�
�
�
�v = u

Figure 6: Sketch of Region T

∫∫
T

∣ det[DΦ(u, v)]∣dudv =

∫∫
T

4v dudv,

Compute by means of iterated integrals∫∫
T

∣ det[DΦ(u, v)]∣dudv =

∫ 1

0

∫ u

0

4v dvdu

=

∫ 1

0

2u2 du

=
2

3
,

which is the same result as that obtained in part (c). □


