Review Problems for Final Exam

- 1. Let P_1 and P_2 denote two distinct points in \mathbb{R}^3 . Let v_1 and v_2 denote two linearly independent vectors in \mathbb{R}^3 . Let ℓ_1 denote the line through P_1 in the direction of v_1 , and ℓ_2 denote the line through P_2 in the direction of v_2 . Assuming that ℓ_1 and ℓ_2 do not meet, give a formula for computing the distance from ℓ_1 to ℓ_2 .
- 2. In this problem, x and y denote vectors in \mathbb{R}^n . Let $g: \mathbb{R}^n \to \mathbb{R}$ given by $g(x) = \sin(||x||)$, for all $x \in \mathbb{R}^n$. Prove that g is continuous on \mathbb{R}^n .
- 3. Let \hat{u} denote a unit vector in \mathbb{R}^n . For a fixed vector v in \mathbb{R}^n , define $g \colon \mathbb{R} \to \mathbb{R}$ by $g(t) = \|v t\hat{u}\|^2$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute g'(t) for all $t \in \mathbb{R}$.

For any $v \in \mathbb{R}^n$, give the point on the line spanned by \hat{u} which is the closest to v. Justify your answer.

4. Let f be a real valued function which is C^1 in an open interval containing the closed an bounded interval [a, b]. Define C to be the portion of the graph of f over [a, b]; that is,

$$C = \{ (x, y) \in \mathbb{R}^2 \mid y = f(x), \ a \leqslant x \leqslant b \}.$$

- (a) Give a parametrization for C and compute the arc length, $\ell(C)$, of C.
- (b) Compute the arc length along the graph of $y = \ln x$ from x = 1 to x = 2.
- 5. Consider the iterated integral $\int_0^1 \int_{x^2}^1 x \sqrt{1-y^2} \, dy dx$.
 - (a) Identify the region of integration, R, for this integral and sketch it.
 - (b) Change the order of integration in the iterated integral and evaluate the double integral $\int_{B} x\sqrt{1-y^2} \, dx dy$.

6. What is the region R over which you integrate when evaluating the iterated integral

$$\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2} + y^{2}}} \, \mathrm{d}y \, \mathrm{d}x?$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?

7. Let R denote the region in the xy-plane given by

$$R = \{ (x, y) \in \mathbb{R}^2 \mid 0 \leqslant x \leqslant 1, \ x^2 \leqslant y \leqslant x \}.$$

Sketch a picture the region R and evaluate the line integral $\int_{\partial R} x^2 dx - xy dy$, where ∂R is the boundary of R traversed in the counterclockwise sense.

8. Let $f: \mathbb{R} \to \mathbb{R}$ denote a twice–differentiable real valued function and define

$$u(x,y) = f(r)$$
 where $r = \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$.

- (a) Define the vector field $F(x, y) = \nabla u(x, y)$. Express F in terms of f' and r.
- (b) Recall that the divergence of a vector field $F = P \hat{i} + Q \hat{j}$ is the scalar field given by $\operatorname{div} F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}$. Express the divergence of the gradient of u, in terms of f', f'' and r.

The expression div (∇u) is called the Laplacian of u, and is denoted by Δu or $\nabla^2 u$.