Review Problems for Final Exam

1. Let P_{1} and P_{2} denote two distinct points in \mathbb{R}^{3}. Let v_{1} and v_{2} denote two linearly independent vectors in \mathbb{R}^{3}. Let ℓ_{1} denote the line through P_{1} in the direction of v_{1}, and ℓ_{2} denote the line through P_{2} in the direction of v_{2}. Assuming that ℓ_{1} and ℓ_{2} do not meet, give a formula for computing the distance from ℓ_{1} to ℓ_{2}.
2. In this problem, x and y denote vectors in \mathbb{R}^{n}.

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(x)=\sin (\|x\|)$, for all $x \in \mathbb{R}^{n}$. Prove that g is continuous on \mathbb{R}^{n}.
3. Let \widehat{u} denote a unit vector in \mathbb{R}^{n}. For a fixed vector v in \mathbb{R}^{n}, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=\|v-t \widehat{u}\|^{2}$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute $g^{\prime}(t)$ for all $t \in \mathbb{R}$.
For any $v \in \mathbb{R}^{n}$, give the point on the line spanned by \widehat{u} which is the closest to v. Justify your answer.
4. Let f be a real valued function which is C^{1} in an open interval containing the closed an bounded interval $[a, b]$. Define C to be the portion of the graph of f over $[a, b]$; that is,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y=f(x), a \leqslant x \leqslant b\right\}
$$

(a) Give a parametrization for C and compute the arc length, $\ell(C)$, of C.
(b) Compute the arc length along the graph of $y=\ln x$ from $x=1$ to $x=2$.
5. Consider the iterated integral $\int_{0}^{1} \int_{x^{2}}^{1} x \sqrt{1-y^{2}} d y d x$.
(a) Identify the region of integration, R, for this integral and sketch it.
(b) Change the order of integration in the iterated integral and evaluate the double integral $\int_{R} x \sqrt{1-y^{2}} d x d y$.
6. What is the region R over which you integrate when evaluating the iterated integral

$$
\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} y \mathrm{~d} x ?
$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?
7. Let R denote the region in the $x y$-plane given by

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 1, x^{2} \leqslant y \leqslant x\right\}
$$

Sketch a picture the region R and evaluate the line integral $\int_{\partial R} x^{2} \mathrm{~d} x-x y \mathrm{~d} y$, where ∂R is the boundary of R traversed in the counterclockwise sense.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, y)=f(r) \quad \text { where } r=\sqrt{x^{2}+y^{2}} \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

(a) Define the vector field $F(x, y)=\nabla u(x, y)$. Express F in terms of f^{\prime} and r.
(b) Recall that the divergence of a vector field $F=P \widehat{i}+Q \widehat{j}$ is the scalar field given by $\operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$. Express the divergence of the gradient of u, in terms of $f^{\prime}, f^{\prime \prime}$ and r.
The expression $\operatorname{div}(\nabla u)$ is called the Laplacian of u, and is denoted by Δu or $\nabla^{2} u$.

