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Solutions to Review Problems for Final Exam

1. Let P1 and P2 denote two distinct points in ℝ3. Let v1 and v2 denote two linearly
independent vectors in ℝ3. Let ℓ1 denote the line through P1 in the direction
of v1, and ℓ2 denote the line through P2 in the direction of v2. Assuming that
ℓ1 and ℓ2 do not meet, give a formula for computing the distance from ℓ1 to ℓ2.

Solution: Let n denote the cross product of the vectors v1 and v2. Then, the
plane, Γ, through P1 and orthogonal to n contains the line ℓ1. Since the vector
v2 is orthogonal to v2 the line ℓ2 is parallel to the plane. Hence, every point of
the line ℓ2 is at the same distance from the plane Γ. Hence,

dist(ℓ1, ℓ2) = dist(P2,Γ)

= ∥Projn(
−−→
P1P2)∥,

(1)

where Projn(
−−→
P1P2) is the orthogonal projection of the vector

−−→
P1P2 onto the

direction of n; that is,

Projn(
−−→
P1P2) =

−−→
P1P2 ⋅ (v1 × v2)
∥v1 × v2∥2

(v1 × v2). (2)

Combining the results of the calculations in (1) and (2), we get that

dist(ℓ1, ℓ2) =
∣
−−→
P1P2 ⋅ (v1 × v2)∣
∥v1 × v2∥

.

□

2. In this problem, x and y denote vectors in ℝn.

Let g : ℝn → ℝ given by g(x) = sin(∥x∥), for allx ∈ ℝn. Prove that g is
continuous on ℝn.

Solution: Let f(x) = ∥x∥ for all x ∈ ℝn and observe that g is the composition
of sin and f ; that is,

g(x) = (sin ∘f)(x), for all x ∈ ℝn. (3)

Thus, the continuity of the g follows from that of sin and f . To see that
f : ℝn → ℝ is continuous, first apply the triangle inequality to get that

∥x∥ ⩽ ∥x− y∥+ ∥y∥, for all x, y ∈ ℝn,
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from which we get that

∥x∥ − ∥y∥ ⩽ ∥x− y∥, for all x, y ∈ ℝn, (4)

Interchanging the roles for x and y in (4) we obtain

∥y∥ − ∥x∥ ⩽ ∥y − x∥.

from which we get
∥y∥ − ∥x∥ ⩽ ∥x− y∥. (5)

Combining (4) and (5) yields

−∥x− y∥ ⩽ ∥x∥ − ∥y∥ ⩽ ∥x− y∥,

which implies that

∣∥y∥ − ∥x∥∣ ⩽ ∥y − x∥, for all x, y ∈ ℝn. (6)

It follows from (6) and the Squeeze Lemma that

lim
∥y−x∥→0

∣f(y)− f(x)∣ = 0,

which shows that f is continuous at every x ∈ ℝn. It then follows from (3) and
the continuity of sin that g is continuous on ℝn. □

3. Let û denote a unit vector in ℝn. For a fixed vector v in ℝn, define g : ℝ → ℝ
by g(t) = ∥v − tû∥2, for all t ∈ ℝ. Show that g is differentiable and compute
g′(t) for all t ∈ ℝ.

For any v ∈ ℝn, give the point on the line spanned by û which is the closest to
v. Justify your answer.

Solution: Use the properties of the dot product to compute

g(t) = ∥v∥2 − 2tv ⋅ û+ t2, (7)

since û is a unit vector. It follows from (7) that g(t) is a quadratic polynomial
in t; hence, g is differentiable and

g′(t) = −2v ⋅ û+ 2t, for all t ∈ ℝ. (8)

Observe that g(t) gives the square of the distance from tû, an arbitrary element
of the line spanned by û, to v. Thus, in order to find the point in span{û} which
is closest to v, we need to minimize g.
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From (8) we get that

g′′(t) = 2 > 0, for all t ∈ ℝ,

so that g has a global minimum when g′(t) = 0, or when t = v ⋅ û. Thus, the
point in span{û} which is closest to v is (v ⋅ û)û, or the orthogonal projection
of v onto û. □

4. Let f be a real valued function which is C1 in an open interval containing the
closed an bounded interval [a, b]. Define C to be the portion of the graph of f
over [a, b]; that is,

C = {(x, y) ∈ ℝ2 ∣ y = f(x), a ⩽ x ⩽ b}.

(a) Give a parametrization for C and compute the arc length, ℓ(C), of C.

Solution: Let � : [a, b]→ ℝ2 be given by

�(t) = (t, f(t)), for t ∈ [a, b].

Then,
�′(t) = (1, f ′(t)), for t ∈ (a, b),

so that
∥�′(t)∥ =

√
1 + [f ′(t)]2, for t ∈ (a, b),

and, therefore, ℓ(C) is given by the formula

ℓ(C) =

∫ b

a

√
1 + [f ′(t)]2 dt. (9)

□

(b) Compute the arc length along the graph of y = lnx from x = 1 to x = 2.

Solution: Apply the formula in (9) to compute

ℓ(C) =

∫ 2

1

√
1 + [ln′(t)]2 dt

=

∫ 2

1

√
1 +

1

t2
dt,

which can be written as

ℓ(C) =

∫ 2

1

1

t

√
t2 + 1 dt. (10)
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Make the change of variables u2 = t2 + 1 in (10), so that

u du = t dt

and the integral in (10) now becomes

ℓ(C) =

∫ √5
√
2

u2

u2 − 1
du. (11)

In order to evaluate the integral on the right–hand side of (11), first re–
write the integrand as

u2

u2 − 1
= 1 +

1

u2 − 1

= 1 +
1

(u+ 1)(u− 1)
.

(12)

Writing the last fraction in (12) as a sum of its partial fractions, we have

u2

u2 − 1
= 1 +

1/2

u− 1
− 1/2

u+ 1
. (13)

Integrating with respect to u on both sides of (13) yields∫
u2

u2 − 1
du = u+

1

2
ln

(
∣u− 1∣
∣u+ 1∣

)
+ c, (14)

for arbitrary constant c.

Next, use the integration formula in (14) to obtain from (11) that

ℓ(C) =
√

5−
√

2 +
1

2

[
ln

(√
5− 1√
5 + 1

)
− ln

(√
2− 1√
2 + 1

)]
.

□

5. Consider the iterated integral

∫ 1

0

∫ 1

x2

x
√

1− y2 dydx.

(a) Identify the region of integration, R, for this integral and sketch it.

Solution: The region R = {(x, y) ∈ ℝ2 ∣ x2 ⩽ y ⩽ 1, 0 ⩽ x ⩽ 1} is
sketched in Figure 1. □
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x

y

R
y = x2

Figure 1: Sketch of Region R

(b) Change the order of integration in the iterated integral and evaluate the

double integral

∫
R

x
√

1− y2 dxdy.

Solution: Compute∫∫
R

x
√

1− y2 dxdy =

∫ 1

0

∫ √y
0

x
√

1− y2 dxdy

=

∫ 1

0

[
x2

2

√
1− y2

]√y
0

dy

=

∫ 1

0

y

2

√
1− y2 dy.

Next, make the change of variables u = 1− y2 to obtain that∫∫
R

x
√

1− y2 dxdy = −1

4

∫ 0

1

√
u du

=
1

4

∫ 1

0

√
u du

=
1

6
.

□

6. What is the region R over which you integrate when evaluating the iterated
integral ∫ 2

1

∫ x

1

x√
x2 + y2

dy dx?
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Rewrite this as an iterated integral first with respect to x, then with respect to
y. Evaluate this integral. Which order of integration is easier?

Solution: The region R = {(x, y) ∈ ℝ2 ∣ 1 ⩽ y ⩽ x, 1 ⩽ x ⩽ 2} is sketched in
Figure 2. Interchanging the order of integration, we obtain that

x

y

R
�
�

�
�
�
�

y = x

Figure 2: Sketch of Region R

∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

∫ 2

y

x√
x2 + y2

dxdy. (15)

The iterated integral in (15) is easier to evaluate; in fact,∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

∫ 2

y

x√
x2 + y2

dxdy

=

∫ 2

1

[√
x2 + y2

]2
y
dy

=

∫ 2

1

[√
4 + y2 −

√
2 y
]
dy.

We therefore get that∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

√
4 + y2 dy −

√
2

∫ 2

1

y dy. (16)
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Evaluating the second integral on the right–hand side of (16) yields∫ 2

1

y dy =
3

2
. (17)

The first integral on the right–hand side of (16) leads to∫ 2

1

√
4 + y2 dy =

[
y

2

√
4 + y2 +

4

2
ln
∣∣∣y +

√
4 + y2

∣∣∣]2
1

,

which evaluates to∫ 2

1

√
4 + y2 dy = 2

√
2−
√

5

2
+ 2 ln

(
2 +
√

8

1 +
√

5

)
. (18)

Substituting (17) and (18) into (16) we obtain∫∫
R

x√
x2 + y2

dxdy =

√
2

2
−
√

5

2
+ 2 ln

(
2 +
√

8

1 +
√

5

)
.

□

7. Let R denote the region in the xy–plane given by

R = {(x, y) ∈ ℝ2 ∣ 0 ⩽ x ⩽ 1, x2 ⩽ y ⩽ x}.

Sketch a picture the region R and evaluate the line integral

∫
∂R

x2 dx−xy dy,

where ∂R is the boundary of R traversed in the counterclockwise sense.

Solution: Apply Green’s Theorem to get∫
∂R

x2 dx− xy dy =

∫∫
R

(
∂

∂x
[−xy]− ∂

∂y
[x2]

)
dxdy

= −
∫∫

R

y dxdy

(19)

We evaluate the double integral in (19) as the iterated integral∫∫
R

y dxdy =

∫ 1

0

∫ x

x2

y dydx

=

∫ 1

0

[
y2

2

]x
x2

dx,
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so that ∫∫
R

y dxdy =
1

2

∫ 1

0

(x2 − x4) dx =
1

15
. (20)

Combining (19) and (20) yields∫
∂R

x2 dx− xy dy = − 1

15
.

□

8. Let f : ℝ→ ℝ denote a twice–differentiable real valued function and define

u(x, y) = f(r) where r =
√
x2 + y2 for all (x, y) ∈ ℝ2.

(a) Define the vector field F (x, y) = ∇u(x, y). Express F in terms of f ′ and
r.

Solution: Compute

F (x, y) = ∇u(x, y) =
∂u

∂x
î+

∂u

∂y
ĵ, (21)

where, by the Chain Rule,

∂u

∂x
= f ′(r)

∂r

∂x
(22)

and
∂u

∂y
= f ′(r)

∂r

∂y
. (23)

In order to compute
∂r

∂x
and

∂r

∂x
, write

r2 = x2 + y2, (24)

and differentiate with respect to x on both sides of (24) to obtain

2r
∂r

∂x
= 2x,

from which we get

∂r

∂x
=
x

r
, for (x, y) ∕= (0, 0). (25)
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Similarly,
∂r

∂y
=
y

r
, for (x, y) ∕= (0, 0). (26)

Substituting (25) into (22) yields

∂u

∂x
=
f ′(r)

r
x. (27)

Similarly, substituting (26) into (23) yields

∂u

∂y
=
f ′(r)

r
y. (28)

Next, substitute (27) and (28) into (21) to obtain

F (x, y) =
f ′(r)

r
(x î+ y ĵ), (29)

□

(b) Recall that the divergence of a vector field F = P î+Q ĵ is the scalar field

given by divF =
∂P

∂x
+
∂Q

∂y
. Express the divergence of the gradient of u,

in terms of f ′, f ′′ and r.

The expression div(∇u) is called the Laplacian of u, and is denoted by Δu
or ∇2u.

Solution: From (29) we obtain that

P (x, y) =
f ′(r)

r
x and Q(x, y) =

f ′(r)

r
y,

so that, applying the Product Rule, Chain Rule and Quotient Rule,

∂P

∂x
=

f ′(r)

r
+ x

d

dr

[
f ′(r)

r

]
∂r

∂x

=
f ′(r)

r
+ x

rf ′′(r)− f ′(r)
r2

x

r
,

(30)

where we have also used (25). Simplifying the expression in (30) yields

∂P

∂x
=

f ′(r)

r
+ x2

f ′′(r)

r2
− x2 f

′(r)

r3
. (31)
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Similar calculations lead to

∂Q

∂y
=

f ′(r)

r
+ y2

f ′′(r)

r2
− y2 f

′(r)

r3
. (32)

Adding the results in (31) and (32), we then obtain that

divF =
∂P

∂x
+
∂Q

∂y

= 2
f ′(r)

r
+ r2

f ′′(r)

r2
− r2 f

′(r)

r3
,

(33)

where we have used (24). Simplifying the expression in (33), we get that

divF = f ′′(r) +
f ′(r)

r
.

□


