Solutions to Review Problems for Final Exam

1. Let P_{1} and P_{2} denote two distinct points in \mathbb{R}^{3}. Let v_{1} and v_{2} denote two linearly independent vectors in \mathbb{R}^{3}. Let ℓ_{1} denote the line through P_{1} in the direction of v_{1}, and ℓ_{2} denote the line through P_{2} in the direction of v_{2}. Assuming that ℓ_{1} and ℓ_{2} do not meet, give a formula for computing the distance from ℓ_{1} to ℓ_{2}.
Solution: Let n denote the cross product of the vectors v_{1} and v_{2}. Then, the plane, Γ, through P_{1} and orthogonal to n contains the line ℓ_{1}. Since the vector v_{2} is orthogonal to v_{2} the line ℓ_{2} is parallel to the plane. Hence, every point of the line ℓ_{2} is at the same distance from the plane Γ. Hence,

$$
\begin{align*}
\operatorname{dist}\left(\ell_{1}, \ell_{2}\right) & =\operatorname{dist}\left(P_{2}, \Gamma\right) \\
& =\left\|\operatorname{Proj}_{n}\left(\overrightarrow{P_{1} P_{2}}\right)\right\|, \tag{1}
\end{align*}
$$

where $\operatorname{Proj}_{n}\left(\overrightarrow{P_{1} P_{2}}\right)$ is the orthogonal projection of the vector $\overrightarrow{P_{1} P_{2}}$ onto the direction of n; that is,

$$
\begin{equation*}
\operatorname{Proj}_{n}\left(\overrightarrow{P_{1} P_{2}}\right)=\frac{\overrightarrow{P_{1} P_{2}} \cdot\left(v_{1} \times v_{2}\right)}{\left\|v_{1} \times v_{2}\right\|^{2}}\left(v_{1} \times v_{2}\right) \tag{2}
\end{equation*}
$$

Combining the results of the calculations in (1) and (2), we get that

$$
\operatorname{dist}\left(\ell_{1}, \ell_{2}\right)=\frac{\left|\overrightarrow{P_{1} P_{2}} \cdot\left(v_{1} \times v_{2}\right)\right|}{\left\|v_{1} \times v_{2}\right\|}
$$

2. In this problem, x and y denote vectors in \mathbb{R}^{n}.

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(x)=\sin (\|x\|)$, for all $x \in \mathbb{R}^{n}$. Prove that g is continuous on \mathbb{R}^{n}.
Solution: Let $f(x)=\|x\|$ for all $x \in \mathbb{R}^{n}$ and observe that g is the composition of \sin and f; that is,

$$
\begin{equation*}
g(x)=(\sin \circ f)(x), \quad \text { for all } x \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

Thus, the continuity of the g follows from that of sin and f. To see that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, first apply the triangle inequality to get that

$$
\|x\| \leqslant\|x-y\|+\|y\|, \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

from which we get that

$$
\begin{equation*}
\|x\|-\|y\| \leqslant\|x-y\|, \quad \text { for all } x, y \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

Interchanging the roles for x and y in (4) we obtain

$$
\|y\|-\|x\| \leqslant\|y-x\|
$$

from which we get

$$
\begin{equation*}
\|y\|-\|x\| \leqslant\|x-y\| \tag{5}
\end{equation*}
$$

Combining (4) and (5) yields

$$
-\|x-y\| \leqslant\|x\|-\|y\| \leqslant\|x-y\|
$$

which implies that

$$
\begin{equation*}
\mid\|y\|-\|x\|\|\leqslant\| y-x \|, \quad \text { for all } x, y \in \mathbb{R}^{n} . \tag{6}
\end{equation*}
$$

It follows from (6) and the Squeeze Lemma that

$$
\lim _{\|y-x\| \rightarrow 0}|f(y)-f(x)|=0
$$

which shows that f is continuous at every $x \in \mathbb{R}^{n}$. It then follows from (3) and the continuity of \sin that g is continuous on \mathbb{R}^{n}.
3. Let \widehat{u} denote a unit vector in \mathbb{R}^{n}. For a fixed vector v in \mathbb{R}^{n}, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=\|v-t \widehat{u}\|^{2}$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute $g^{\prime}(t)$ for all $t \in \mathbb{R}$.
For any $v \in \mathbb{R}^{n}$, give the point on the line spanned by \widehat{u} which is the closest to v. Justify your answer.
Solution: Use the properties of the dot product to compute

$$
\begin{equation*}
g(t)=\|v\|^{2}-2 t v \cdot \widehat{u}+t^{2} \tag{7}
\end{equation*}
$$

since \widehat{u} is a unit vector. It follows from (7) that $g(t)$ is a quadratic polynomial in t; hence, g is differentiable and

$$
\begin{equation*}
g^{\prime}(t)=-2 v \cdot \widehat{u}+2 t, \quad \text { for all } t \in \mathbb{R} \tag{8}
\end{equation*}
$$

Observe that $g(t)$ gives the square of the distance from $t \widehat{u}$, an arbitrary element of the line spanned by \widehat{u}, to v. Thus, in order to find the point in $\operatorname{span}\{\widehat{u}\}$ which is closest to v, we need to minimize g.

From (8) we get that

$$
g^{\prime \prime}(t)=2>0, \quad \text { for all } t \in \mathbb{R}
$$

so that g has a global minimum when $g^{\prime}(t)=0$, or when $t=v \cdot \widehat{u}$. Thus, the point in $\operatorname{span}\{\widehat{u}\}$ which is closest to v is $(v \cdot \widehat{u}) \widehat{u}$, or the orthogonal projection of v onto \widehat{u}.
4. Let f be a real valued function which is C^{1} in an open interval containing the closed an bounded interval $[a, b]$. Define C to be the portion of the graph of f over $[a, b]$; that is,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y=f(x), a \leqslant x \leqslant b\right\} .
$$

(a) Give a parametrization for C and compute the arc length, $\ell(C)$, of C.

Solution: Let $\sigma:[a, b] \rightarrow \mathbb{R}^{2}$ be given by

$$
\sigma(t)=(t, f(t)), \quad \text { for } t \in[a, b]
$$

Then,

$$
\sigma^{\prime}(t)=\left(1, f^{\prime}(t)\right), \quad \text { for } t \in(a, b)
$$

so that

$$
\left\|\sigma^{\prime}(t)\right\|=\sqrt{1+\left[f^{\prime}(t)\right]^{2}}, \quad \text { for } t \in(a, b)
$$

and, therefore, $\ell(C)$ is given by the formula

$$
\begin{equation*}
\ell(C)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t \tag{9}
\end{equation*}
$$

(b) Compute the arc length along the graph of $y=\ln x$ from $x=1$ to $x=2$.

Solution: Apply the formula in (9) to compute

$$
\begin{aligned}
\ell(C) & =\int_{1}^{2} \sqrt{1+\left[\ln ^{\prime}(t)\right]^{2}} d t \\
& =\int_{1}^{2} \sqrt{1+\frac{1}{t^{2}}} d t
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\ell(C)=\int_{1}^{2} \frac{1}{t} \sqrt{t^{2}+1} d t \tag{10}
\end{equation*}
$$

Make the change of variables $u^{2}=t^{2}+1$ in (10), so that

$$
u d u=t d t
$$

and the integral in (10) now becomes

$$
\begin{equation*}
\ell(C)=\int_{\sqrt{2}}^{\sqrt{5}} \frac{u^{2}}{u^{2}-1} d u \tag{11}
\end{equation*}
$$

In order to evaluate the integral on the right-hand side of (11), first rewrite the integrand as

$$
\begin{align*}
\frac{u^{2}}{u^{2}-1} & =1+\frac{1}{u^{2}-1} \\
& =1+\frac{1}{(u+1)(u-1)} \tag{12}
\end{align*}
$$

Writing the last fraction in (12) as a sum of its partial fractions, we have

$$
\begin{equation*}
\frac{u^{2}}{u^{2}-1}=1+\frac{1 / 2}{u-1}-\frac{1 / 2}{u+1} \tag{13}
\end{equation*}
$$

Integrating with respect to u on both sides of (13) yields

$$
\begin{equation*}
\int \frac{u^{2}}{u^{2}-1} d u=u+\frac{1}{2} \ln \left(\frac{|u-1|}{|u+1|}\right)+c \tag{14}
\end{equation*}
$$

for arbitrary constant c.
Next, use the integration formula in (14) to obtain from (11) that

$$
\ell(C)=\sqrt{5}-\sqrt{2}+\frac{1}{2}\left[\ln \left(\frac{\sqrt{5}-1}{\sqrt{5}+1}\right)-\ln \left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)\right] .
$$

5. Consider the iterated integral $\int_{0}^{1} \int_{x^{2}}^{1} x \sqrt{1-y^{2}} d y d x$.
(a) Identify the region of integration, R, for this integral and sketch it.

Solution: The region $R=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} \leqslant y \leqslant 1,0 \leqslant x \leqslant 1\right\}$ is sketched in Figure 1.

Figure 1: Sketch of Region R
(b) Change the order of integration in the iterated integral and evaluate the double integral $\int_{R} x \sqrt{1-y^{2}} d x d y$.
Solution: Compute

$$
\begin{aligned}
\iint_{R} x \sqrt{1-y^{2}} d x d y & =\int_{0}^{1} \int_{0}^{\sqrt{y}} x \sqrt{1-y^{2}} d x d y \\
& =\int_{0}^{1}\left[\frac{x^{2}}{2} \sqrt{1-y^{2}}\right]_{0}^{\sqrt{y}} d y \\
& =\int_{0}^{1} \frac{y}{2} \sqrt{1-y^{2}} d y
\end{aligned}
$$

Next, make the change of variables $u=1-y^{2}$ to obtain that

$$
\begin{aligned}
\iint_{R} x \sqrt{1-y^{2}} d x d y & =-\frac{1}{4} \int_{1}^{0} \sqrt{u} d u \\
& =\frac{1}{4} \int_{0}^{1} \sqrt{u} d u \\
& =\frac{1}{6}
\end{aligned}
$$

6. What is the region R over which you integrate when evaluating the iterated integral

$$
\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} y \mathrm{~d} x ?
$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?
Solution: The region $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leqslant y \leqslant x, 1 \leqslant x \leqslant 2\right\}$ is sketched in Figure 2. Interchanging the order of integration, we obtain that

Figure 2: Sketch of Region R

$$
\begin{equation*}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{1}^{2} \int_{y}^{2} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \tag{15}
\end{equation*}
$$

The iterated integral in (15) is easier to evaluate; in fact,

$$
\begin{aligned}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y & =\int_{1}^{2} \int_{y}^{2} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \\
& =\int_{1}^{2}\left[\sqrt{x^{2}+y^{2}}\right]_{y}^{2} d y \\
& =\int_{1}^{2}\left[\sqrt{4+y^{2}}-\sqrt{2} y\right] d y
\end{aligned}
$$

We therefore get that

$$
\begin{equation*}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{1}^{2} \sqrt{4+y^{2}} d y-\sqrt{2} \int_{1}^{2} y d y \tag{16}
\end{equation*}
$$

Evaluating the second integral on the right-hand side of (16) yields

$$
\begin{equation*}
\int_{1}^{2} y d y=\frac{3}{2} \tag{17}
\end{equation*}
$$

The first integral on the right-hand side of (16) leads to

$$
\int_{1}^{2} \sqrt{4+y^{2}} d y=\left[\frac{y}{2} \sqrt{4+y^{2}}+\frac{4}{2} \ln \left|y+\sqrt{4+y^{2}}\right|\right]_{1}^{2}
$$

which evaluates to

$$
\begin{equation*}
\int_{1}^{2} \sqrt{4+y^{2}} d y=2 \sqrt{2}-\frac{\sqrt{5}}{2}+2 \ln \left(\frac{2+\sqrt{8}}{1+\sqrt{5}}\right) \tag{18}
\end{equation*}
$$

Substituting (17) and (18) into (16) we obtain

$$
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\frac{\sqrt{2}}{2}-\frac{\sqrt{5}}{2}+2 \ln \left(\frac{2+\sqrt{8}}{1+\sqrt{5}}\right)
$$

7. Let R denote the region in the $x y$-plane given by

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 1, x^{2} \leqslant y \leqslant x\right\}
$$

Sketch a picture the region R and evaluate the line integral $\int_{\partial R} x^{2} \mathrm{~d} x-x y \mathrm{~d} y$, where ∂R is the boundary of R traversed in the counterclockwise sense.
Solution: Apply Green's Theorem to get

$$
\begin{align*}
\int_{\partial R} x^{2} \mathrm{~d} x-x y \mathrm{~d} y & =\iint_{R}\left(\frac{\partial}{\partial x}[-x y]-\frac{\partial}{\partial y}\left[x^{2}\right]\right) d x d y \tag{19}\\
& =-\iint_{R} y d x d y
\end{align*}
$$

We evaluate the double integral in (19) as the iterated integral

$$
\begin{aligned}
\iint_{R} y d x d y & =\int_{0}^{1} \int_{x^{2}}^{x} y d y d x \\
& =\int_{0}^{1}\left[\frac{y^{2}}{2}\right]_{x^{2}}^{x} d x
\end{aligned}
$$

so that

$$
\begin{equation*}
\iint_{R} y d x d y=\frac{1}{2} \int_{0}^{1}\left(x^{2}-x^{4}\right) d x=\frac{1}{15} . \tag{20}
\end{equation*}
$$

Combining (19) and (20) yields

$$
\int_{\partial R} x^{2} \mathrm{~d} x-x y \mathrm{~d} y=-\frac{1}{15} .
$$

8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, y)=f(r) \quad \text { where } r=\sqrt{x^{2}+y^{2}} \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

(a) Define the vector field $F(x, y)=\nabla u(x, y)$. Express F in terms of f^{\prime} and r.
Solution: Compute

$$
\begin{equation*}
F(x, y)=\nabla u(x, y)=\frac{\partial u}{\partial x} \widehat{i}+\frac{\partial u}{\partial y} \widehat{j} \tag{21}
\end{equation*}
$$

where, by the Chain Rule,

$$
\begin{equation*}
\frac{\partial u}{\partial x}=f^{\prime}(r) \frac{\partial r}{\partial x} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=f^{\prime}(r) \frac{\partial r}{\partial y} \tag{23}
\end{equation*}
$$

In order to compute $\frac{\partial r}{\partial x}$ and $\frac{\partial r}{\partial x}$, write

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} \tag{24}
\end{equation*}
$$

and differentiate with respect to x on both sides of (24) to obtain

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

from which we get

$$
\begin{equation*}
\frac{\partial r}{\partial x}=\frac{x}{r}, \quad \text { for }(x, y) \neq(0,0) \tag{25}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial r}{\partial y}=\frac{y}{r}, \quad \text { for }(x, y) \neq(0,0) \tag{26}
\end{equation*}
$$

Substituting (25) into (22) yields

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{f^{\prime}(r)}{r} x \tag{27}
\end{equation*}
$$

Similarly, substituting (26) into (23) yields

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{f^{\prime}(r)}{r} y \tag{28}
\end{equation*}
$$

Next, substitute (27) and (28) into (21) to obtain

$$
\begin{equation*}
F(x, y)=\frac{f^{\prime}(r)}{r}(x \widehat{i}+y \widehat{j}) \tag{29}
\end{equation*}
$$

(b) Recall that the divergence of a vector field $F=P \widehat{i}+Q \widehat{j}$ is the scalar field given by $\operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$. Express the divergence of the gradient of u, in terms of $f^{\prime}, f^{\prime \prime}$ and r.
The expression $\operatorname{div}(\nabla u)$ is called the Laplacian of u, and is denoted by Δu or $\nabla^{2} u$.
Solution: From (29) we obtain that

$$
P(x, y)=\frac{f^{\prime}(r)}{r} x \quad \text { and } \quad Q(x, y)=\frac{f^{\prime}(r)}{r} y
$$

so that, applying the Product Rule, Chain Rule and Quotient Rule,

$$
\begin{align*}
\frac{\partial P}{\partial x} & =\frac{f^{\prime}(r)}{r}+x \frac{d}{d r}\left[\frac{f^{\prime}(r)}{r}\right] \frac{\partial r}{\partial x} \tag{30}\\
& =\frac{f^{\prime}(r)}{r}+x \frac{r f^{\prime \prime}(r)-f^{\prime}(r)}{r^{2}} \frac{x}{r}
\end{align*}
$$

where we have also used (25). Simplifying the expression in (30) yields

$$
\begin{equation*}
\frac{\partial P}{\partial x}=\frac{f^{\prime}(r)}{r}+x^{2} \frac{f^{\prime \prime}(r)}{r^{2}}-x^{2} \frac{f^{\prime}(r)}{r^{3}} . \tag{31}
\end{equation*}
$$

Similar calculations lead to

$$
\begin{equation*}
\frac{\partial Q}{\partial y}=\frac{f^{\prime}(r)}{r}+y^{2} \frac{f^{\prime \prime}(r)}{r^{2}}-y^{2} \frac{f^{\prime}(r)}{r^{3}} \tag{32}
\end{equation*}
$$

Adding the results in (31) and (32), we then obtain that

$$
\begin{align*}
\operatorname{div} F & =\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} \tag{33}\\
& =2 \frac{f^{\prime}(r)}{r}+r^{2} \frac{f^{\prime \prime}(r)}{r^{2}}-r^{2} \frac{f^{\prime}(r)}{r^{3}}
\end{align*}
$$

where we have used (24). Simplifying the expression in (33), we get that

$$
\operatorname{div} F=f^{\prime \prime}(r)+\frac{f^{\prime}(r)}{r}
$$

