Assignment \#12

Due on Friday, October 21, 2011
Read Section 4.6 on Integration Technique, pp. 172-178, in Essential Calculus with Applications by Richard A. Silverman.

Read Section 4.7, Linear First Order Differential Equations, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 54.

Do the following problems

1. Solve the initial value problem

$$
\frac{d y}{d t}=-y+t, \quad y(0)=0
$$

2. For each $b>0$, evaluate

$$
F(b)=\int_{0}^{b} t e^{-t} d t
$$

Then, compute $\lim _{b \rightarrow \infty} F(b)$, if it exists.
3. Let $f(t)=t \sin t$ and evaluate the area the region in the $t y$-plane under the graph of $y=f(t)$, bounded by the t-axis, and between $t=0$ and $t=\pi$.
4. Let $f(t)=t \ln t$ for all $t>0$. In Problem 3 of Assignment \#5, you were asked to sketch the graph of $y=f(t)$. Evaluate the area of the region in the $t y$-plane which is below the t-axis and above the graph of $y=f(t)$.
5. For each $t>0$, define $F(t)$ to be the area in the τy-pane under the graph of $y=\tau^{2} e^{-\tau}$ from $\tau=0$ to $\tau=t$.
(a) Obtain a formula for computing $F(t)$, for $t>0$.
(b) Determine the values of t for which $F(t)$ increases or decreases, and the values of t for which the graph of $y=F(t)$ is concave up or concave down.
(c) Sketch the graph of $y=F(t)$.

