Assignment \#14

Due on Friday, October 28, 2011
Read Section 4.9, Solving the Logistic equation, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 64.

Do the following problems

1. For any population, ignoring migration, harvesting, or predation, one can model the relative growth rate by the following conservation principle

$$
\frac{1}{N} \frac{d N}{d t}=\text { birth rate (per capita) }- \text { death rate (per capita) }=b-d
$$

where b and d could be functions of time and the population density N.
(a) Suppose that b and d are linear functions of N given by $b=b_{o}-\alpha N$ and $d=d_{o}+\beta N$ where b_{o}, d_{o}, α and β are positive constants. Assume that $b_{o}>d_{o}$. Sketch the graphs of b and d as functions of N. Give a possible interpretation for these graphs.
(b) Find the point where the two lines sketched in part (a) intersect. Let K denote the first coordinate of the point of intersection. Show that $K=$ $\frac{b_{o}-d_{o}}{\alpha+\beta} . K$ is the carrying capacity of the population.
(c) Show that $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)$ where $r=b_{o}-d_{o}$ is the intrinsic growth rate.
2. Assume that a population of size $N=N(t)$ grows according to a logistic model with carrying capacity of 5×10^{8} individuals. Assume also that, when the population size is very small, the population doubles every 30 minutes. Suppose the initial population is 10^{8}. Estimate the size of the population two hours later.
3. Let $N=N(t)$ denote the size of the population described in Problem 2, where t is measured in hours. Estimate the time that it will take the population to grow to 90% of its carrying capacity.
4. Suppose that a population of size $N=N(t)$ grows according to the Logistic model. Assume that the population grows from a size N_{1} to a size N_{2} is an interval of time of length T. Show that

$$
\begin{equation*}
T=\int_{N_{1}}^{N_{2}} \frac{K}{r N(K-N)} d N \tag{1}
\end{equation*}
$$

where K is the carrying capacity and r is the intrinsic growth rate.
5. Suppose a population of size $N=N(t)$ grows logistically with intrinsic growth rate r and carrying capacity K. Use the formula (1) derived in Problem 4 answer the following questions.
(a) Calculate the time that it takes for the population size to grow from $N_{1}=$ $K / 4$ to $N_{2}=K / 2$.
(b) What happens to T in (1) as N_{2} tends to K ?

