Assignment \#16

Due on Friday, November 4, 2011
Read Section 4.9, Solving the Logistic equation, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 64.

Read Section 4.9.2, Partial Fractions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 67.

Do the following problems

1. Logistic Growth ${ }^{1}$. Suppose that the growth of a certain animal population is governed by the differential equation

$$
\frac{1000}{N} \frac{d N}{d t}=100-N
$$

where $N(t)$ denote the number of individuals in the population at time t.
(a) Suppose there are 200 individuals in the population at time $t=0$. Sketch the graph of $N=N(t)$.
(b) Will there ever be more than 200 individuals in the population? Will there ever be fewer than 100 individuals? Explain your answer.
2. Spread of a viral infection ${ }^{2}$. Let $I(t)$ denote the total number of people infected with a virus. Assume that $I(t)$ grows according to a logistic model. Suppose that 10 people have the virus originally and that, in the early stages of the infection the number of infected people doubles every 3 days. It is also estimated that, in the long run 5000 people in a given area will become infected.
(a) Solve an appropriate logistic model to find a formula for computing $I(t)$, where t is the time from the initial infection measured in weeks. Sketch the graph of $I(t)$.
(b) Estimate the time when the rate of infected people begins to decrease.

[^0]3. Non-Logistic Growth ${ }^{3}$. There are many classes of organisms whose birth rate is not proportional to the population size. For example, suppose that each member of the population requires a partner for reproduction, and each member relies on chance encounters for meeting a mate. Assume that the expected number of encounters is proportional to the product of numbers of female and male members in the population, and that these are equally distributed; hence, the number of encounters will be proportional to the square of the size of the population.
Use a conservation principle to derive the population model
\[

$$
\begin{equation*}
\frac{d N}{d t}=a N^{2}-b N \tag{1}
\end{equation*}
$$

\]

where a and b are positive constants. Explain your reasoning.
4. For the equation in (1),
(a) find the values of N for which the population size is not changing;
(b) find the range of positive values of N for which the population size is increasing, and those for which it is decreasing;
(c) find ranges of positive values of N for which the graph of $N=N(t)$ is concave up, and those for which it is concave down;
(d) Sketch possible solutions.
5. For the equation in (1),
(a) use separation of variables and partial fractions to find a solution satisfying the initial condition $N(0)=N_{o}$, for $N_{o}>0$.
(b) What happens to $N(t)$ as $t \rightarrow \infty$ if $N_{o}>b / a$? What happens if $N_{o}<b / a$? Why is b / a called a threshold value?

[^1]
[^0]: ${ }^{1}$ Adapted from Problem 6 on page 521 in Hughes-Hallett et al, Calculus, Third Edition, Wiley, 2002
 ${ }^{2}$ Adapted from Problem 7 on page 521 in Hughes-Hallett et al, Calculus, Third Edition, Wiley, 2002

[^1]: ${ }^{3}$ Adapted from Problem 12 on page 39 in Braun, Differential Equations and their Applications, Fourth Edition, Springer-Verlag, 1993

