## Assignment \#17

Due on Friday, November 11, 2011
Read Chapter 5, Applications of Differentiable Calculus, Part II, in the class lecture notes at
http://pages.pomona.edu/~ajr04747/, starting on page 77 .
Read Section 5.1, Linear Approximations, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 78.

## Background and Definitions

Let $f: I \rightarrow \mathbf{R}$ denote a differentiable function defined on some open interval $I$, which contains $a$. The linear approximation to $f$ around $a$ is defined by

$$
L(x ; a)=f(a)+f^{\prime}(a)(x-a), \quad \text { for all } x \in \mathbf{R} .
$$

The linear function $L$ approximates $f$ around $a$ in the sense that

$$
f(x)=L(x ; a)+E(a, x)
$$

where the error term, $E$, satisfies

$$
\lim _{x \rightarrow a} \frac{|E(a ; x)|}{|x-a|}=0
$$

If $f$ is twice differentiable, the error terms is given by

$$
E(a ; x)=f(x)-L(x ; a)=\int_{a}^{x} f^{\prime \prime}(t)(x-t) \mathrm{d} t
$$

Hence, if $\left|f^{\prime \prime}(x)\right| \leq M$ for some constant $M$ in some interval around $a$, then

$$
|E(x ; a)| \leq \frac{M}{2}|x-a|^{2}
$$

for $x$ in that interval.
Do the following problems

1. Let $f(x)=\frac{1}{\sqrt{1+x}}$ for $x>-1$. Give the linear approximation to $f$ around $a=0$.
2. Let $f(x)=e^{-x}$ for all $x \in \mathbf{R}$. Give the linear approximation to $f$ around $a=1$.
3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=\sin (x)$ for all $x \in \mathbf{R}$.
(a) Give the linear approximation for $f(x)$ near $a=\pi / 6$.
(b) Estimate the error term $E(x ; \pi / 6)=\int_{\pi / 6}^{x} f^{\prime \prime}(t)(x-t) \mathrm{d} t$.
(c) How far can $x$ be from $\pi / 6$ so that the approximation is good to two decimal places?
(d) Estimate $\sin (0.51)$. Compare with the approximation obtained with a calculator.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=e^{-x}$ for all $x \in \mathbf{R}$.
(a) Give the linear approximation for $f(x)$ near $a=0$.
(b) Estimate the error term $E(x ; 0)=\int_{0}^{x} f^{\prime \prime}(t)(x-t) \mathrm{d} t$ for $x>0$, using the estimate $e^{-x} \leq 1$ for all $x \geq 0$.
(c) How far can $x>0$ be from 0 so that the approximation is good to two decimal places?
(d) Estimate $1 / e^{0.09}$. How accurate is your estimate?
5. Linear Approximations ${ }^{1}$. Multiply the linear approximation to $e^{x}$ near $a=0$ by itself to obtain an approximation for $e^{2 x}$. Compare this with the linear approximation you obtain for the function $f f(x)=e^{2 x}$ for all $x \in \mathbf{R}$. Explain why the two approximations to $e^{2 x}$ are consistent, and discuss which one is more accurate.
[^0]
[^0]:    ${ }^{1}$ Adapted from Problem 8 on page 153 in Hughes-Hallett et al, Calculus, Third Edition, Wiley, 2002

