Assignment \#2

Due on Wednesday, September 7, 2011
Read Chapter 2, Introduction to Modeling, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.42 on The Fundamental Theorem of Calculus, pp. 149-150, in Essential Calculus with Applications by Richard A. Silverman.

Do the following problems

1. Let $N(t)$ denote the size of a bacterial population in culture at time $t . N(t)$ can be measured by weight (e.g., grams), or by concentration via optical density measurements. Assume that $N=N(t)$ is twice differentiable and that it satisfies the following differential equation:

$$
\begin{equation*}
\frac{d N}{d t}=1.24 N-3.60 N^{2} \tag{1}
\end{equation*}
$$

where $N=N(t)$ measures the concentration of bacteria obtained via optical density measurements.
Using the information provided by the differential equation in (1),
(a) find the values of N for which the population size is not changing; that is the values of N for which $\frac{d N}{d t}=0$;
(b) find the range of positive values of N for which the population size is increasing; that is the values of N for which $\frac{d N}{d t}>0$;
(c) find the range of positive values of N for which the population size is decreasing; that is the values of N for which $\frac{d N}{d t}<0$.
2. Use the differential equation in (1) and the Chain Rule to obtain an expression for the second derivative of N with respect to $t, \frac{d^{2} N}{d t^{2}}$. Put your answer in the form

$$
\begin{equation*}
\frac{d^{2} N}{d t^{2}}=g(N) \tag{2}
\end{equation*}
$$

where g is a function of a single variable.
3. Based on your answer to Problem 2 in the form of equation (2),
(a) find the values of N for which the graph of $N=N(t)$ (that is, graph of N as a function of t in the $t N$-plane), might have an inflection point; that is, find the values of N for which $\frac{d^{2} N}{d t^{2}}=0$;
(b) find the range of positive values of N for which the graph of $N=N(t)$ is concave up; that is the values of N for which $\frac{d^{2} N}{d t^{2}}>0$;
(c) find the range of positive values of N for which the graph of $N=N(t)$ is concave down; that is the values of N for which $\frac{d^{2} N}{d t^{2}}<0$.
4. Suppose that $N=N(t)$ is a solution to the differential equation in (1). Use the qualitative information about the graph of $N=N(t)$ obtained in Problems 2 and 3 to sketch possible graphs of N for $N \geqslant 0$.

Based on your sketches, explain what the population model in (1) seems to be predicting.
5. Analysis of certain one-compartment dilution model yields the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=a\left(1-\frac{Q}{L}\right) \tag{3}
\end{equation*}
$$

for positive constants a and L.
Assume that the differential equation in (3) has a solution, $Q=Q(t)$, which is twice-differentiable.
(a) Determine the value, or values, of Q for which $\frac{d Q}{d t}=0$.
(b) Find a range of positive values of Q on which $Q(t)$ is increasing, and those values of Q for which $Q(t)$ is decreasing.
(c) Determine values of Q on which the graph of $Q=Q(t)$ is concave up, and those on which it is concave down.
(d) Use the qualitative information obtained in parts (b) and (c) to sketch possible graphs of a solution, $Q=Q(t)$, of the differential equation in (3), for positive values of Q.
Based on your sketches, explain what the equation in (3) seems to be predicting.

