## Assignment \#4

Due on Friday, September 16, 2011
Read Section 4.2 on Properties of Definite Integrals, pp. 144-150, in Essential Calculus with Applications by Richard A. Silverman.

Read Chapter 4, Applications of Integral Calculus, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 17.

Do the following problems

1. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=t \sin \left(t^{2}\right) \\
y(0)=0
\end{array}\right.
$$

for $t \in \mathbf{R}$.
2. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{\cos (\pi+\sqrt{t})}{\sqrt{t}} \\
y\left(\pi^{2}\right)=1
\end{array}\right.
$$

for $t \geqslant 0$.
3. Let the graph of $y=f(t)$ be as sketched in Figure 1 on page 2 and put

$$
F(t)=\int_{0}^{t} f(\tau) d \tau, \text { for } t \geqslant 0
$$

(a) Based on the sketch in Figure 1, determine intervals on which (i) $F(t)$ increases, (ii) $F(t)$ decreases, (iii) the graph of $y=F(t)$ is concave up, and (iv) the graph of $y=F(t)$ is concave down.
(b) Estimate the times at which $F(t)$ is (i) a local maximum, and (ii) (i) a local minimum.
(c) Locate any inflection points in the graph of $y=F(t)$


Figure 1: Sketch of graph of $y=f(t)$
4. Let $f$ and $F$ be as in Problem 3. Use the qualitative information obtained in Problem 3 to sketch the graph of $y=F(t)$.
5. Let $f$ and $F$ be as in Problem 3. Given that $t_{2}=2$ and $t_{3}$ is about 3 and $f\left(t_{2}\right)$ is about 0.75 , estimate the maximum value of $F$ over the range of values of $t$ pictured in Figure 1.
Suggestion: For this problem you may also assume the estimates $f(0) \approx-1$ and $t_{1} \approx 1$.

