Assignment #6

Due on Wednesday, September 21, 2011

Read Section 4.3 on *The Logarithm*, pp. 153–157, in *Essential Calculus with Applications* by Richard A. Silverman.

Read Section 4.4 on *The Exponential*, pp. 159–163, in *Essential Calculus with Applications* by Richard A. Silverman.

Read Section 4.5 on *More about the Logarithm and Exponential*, pp. 165–170, in *Essential Calculus with Applications* by Richard A. Silverman.

Read Section 4.2, *The Natural Logarithm Function*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 22.

 \mathbf{Do} the following problems

1. Show that $\int_{1}^{2.5} \frac{1}{\tau} d\tau < 1$ by comparing the area under the graph of $y = 1/\tau$ from $\tau = 1$ to $\tau = 2.5$ with the sum of the areas of circumscribed rectangles of width 0.25.

Use this result to conclude that 2.5 < e.

2. In class and in the lecture notes we showed that 2 < e < 3. Show that

$$\int_{1}^{2.875} \frac{1}{\tau} d\tau > 1$$

by comparing the area under the graph of $y = 1/\tau$ from $\tau = 1$ to $\tau = 2.875$ with the areas of inscribed rectangles of width 0.125. Use the result of this problem and Problem 1 to conclude that 2.5 < e < 2.875.

3. (Base 10 Logarithm Function, or Common Logarithm). We say that y is the logarithm to base 10 of t if $10^y = t$. We write $y = \log t$. Thus,

 $y = \log t$ if and only if $10^y = t$.

Solve the following equations for x using common logarithms.

(i) $2^x = 10$; (ii) $e^x = 10$; (iii) $10^x = e$; and (iv) $b^x = a$, where a and b are positive real numbers

4. Suppose that $y = \log t$, for some positive real number t. Show that $y = \frac{\ln t}{\ln 10}$.

5. Derive the formula $\ln t = \frac{\log t}{\log e}$, for all t > 0.