Assignment \#8

Due on Wednesday, September 28, 2011
Read Section 4.4 on The Exponential, pp. 159-163, in Essential Calculus with Applications by Richard A. Silverman.

Read Section 4.5 on More about the Logarithm and Exponential, pp. 165-170, in Essential Calculus with Applications by Richard A. Silverman.

Read Section 4.4, The Exponential Function, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 32.

Do the following problems

1. Use the properties of \ln and exp to compute the exact value of $\ln (\sqrt{e})$. Compare your result with the approximation given by a calculator.
2. Let $f(t)=t e^{-t^{2}}$ for all $t \in \mathbf{R}$. Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$. Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema, the values of t for which the graph of f is concave up, and those for which the graph is concave down, and all the inflection points of the graph of f. Sketch the graph of $y=f(t)$.
3. Let $f(t)=t e^{-t^{2}}$ for all $t \in \mathbf{R}$. For each $b>0$ compute

$$
F(b)=\int_{0}^{b} t e^{-t^{2}} d t
$$

that is, $F(b)$ is the area under the graph of $y=f(t)$ from $t=0$ to $t=b$.
Compute $\lim _{b \rightarrow \infty} F(b)$. We denote this limit by $\int_{0}^{\infty} f(t) d t$, and call it the improper integral of f over the interval $(0, \infty)$.
4. Define $f(t)=t^{t}$, for all $t>0$, and put $g(t)=\ln [f(t)]$ for all $t>0$.
(a) By differentiating g with respect to t, come up with a formula for computing $f^{\prime}(t)$.
Note: You will need to apply the Chain Rule when computing $\frac{d}{d t}[\ln [f(t)]]$.
(b) Compute $f^{\prime \prime}(t)$. Does the graph of $y=f(t)$ have any inflection points?
5. Let t_{o}, r and y_{o} denote real numbers. Verify that $y(t)=y_{o} e^{r\left(t-t_{o}\right)}$, for $t \in \mathbf{R}$, is the unique solutions to the initial value problem: $\frac{d y}{d t}=r y, y\left(t_{o}\right)=y_{o}$.

