Assignment \#9

Due on Friday, September 30, 2011
Read Section 5.2 on Problems of Growth and Decay, pp. 192-197, in Essential Calculus with Applications by Richard A. Silverman.

Read Section 4.6, Analysis of the Malthusian Model, in the class lecture notes at http://pages.pomona.edu/~ajr04747/, starting on page 42.

Do the following problems

1. Assume that a certain strain of E Coli bacteria in a culture has a doubling time of about 30 minutes.
(a) Assuming a Malthusian growth model for the bacteria, give an expression, $N(t)$, for the number of bacteria in the culture at time t, given that at $t=0$ there are N_{o} bacteria in the culture.
(b) How long does it take a thousand bacteria in the culture to produce one million?
2. Assume that the bacterial colony described in Problem 1 has an unlimited supply of nutrients conducive to Malthusian growth. Assume also that the bacteria are spherical with a diameter of 10^{-6} meters. Estimate the time that it would take a single bacterium of E Coli to grow into a mega-colony to fill the Earth's oceans, seas and bays. Use the estimate given by WolframAlpha ${ }^{\circledR}$ (http://www.wolframalpha.com/) of 1.332×10^{21} liters for the Earth's oceans, seas and bays.
3. Suppose a bacterial colony is growing according to the Malthusian model. Assume that the length of a division cycle corresponds to the doubling time. If the time, t, is measured in units of division cycle divided by $\ln 2$, give a formula for $N(t)$, given that $N(0)=N_{o}$. By how much does the population increase in one unit of time?
4. Assume that the rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time. Let $Q=Q(t)$ denote the amount of the drug in the bloodstream at time t. In Problem 3 of Assignment 1, you applied a conservation principle to derive the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=-k Q \tag{1}
\end{equation*}
$$

where k is a positive constant of proportionality, and t is measured in hours.
(a) Solve the differential equation in (1) for the case in which an initial dose of Q_{o} is injected directly into the blood at time $t=0$.
(b) Assume that 20% of the initial dose is left in the blood after 3 hours. Write a formula for computing $Q(t)$ for any time t, in hours.
(c) What percentage of the initial dosage of the drug is left in the patient's body after 6 hours?
5. In a one-compartment dilution experiment, a substance is found dissolved in water in an initial amount Q_{o} (in moles) in a compartment with constant volume V. Suppose pure distilled water flows into the compartment at a constant rate r (in moles per liter) and that the well-stirred mixture is drained from the tank at the same rate. Suppose that in the experiment the following concentrations of the substance were observed as a function of time:

$t[\mathrm{sec}]$	C [moles/liter]
0	0.024
1	0.011
2	0.0048
3	0.0024
4	0.0010

If $Q_{o}=0.1$ mole, find the flow rate r and the volume V.
(Suggestion: Plot the natural logarithm of the concentration, $\ln C$, versus time, t, and find the best straight line that fits the data.)

