Review Problems for Exam 1

(1) Water leaks out a barrel at a rate proportional to the square root of the depth of the water at that time. If the water level starts at 36 inches and drops to 35 inches in 1 minute, how long will it take for the water to leak out of the barrel?
(2) The rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time. If an initial dose of Q_{o} is injected directly into the blood, 20% is left in the blood after 3 hours.
(a) Write and solve a differential equation for the quantity, Q, of the drug in the blood at time, t, in hours.
(b) How much of the drug is left in the patient's body after 6 hours if the patient is given 100 mg initially?
(3) Use the Fundamental Theorem of Calculus to show that $y(t)=y_{o} \exp (F(t))$, where F is the antiderivative of f with $F(0)=0$, is a solution to the initial value problem $\frac{d y}{d t}=f(t) y, \quad y(0)=y_{o}$.
(4) Find a solution to the initial value problem $\frac{d y}{d t}=e^{t-y}, \quad y(0)=1$.
(5) Evaluate the following integrals
(a) $\int_{0}^{1} \frac{e^{-x}}{2-e^{-x}} \mathrm{~d} x$
(b) $\int \frac{1}{x \ln x} \mathrm{~d} x$
(c) $\int_{1}^{2} \frac{\ln x}{x} \mathrm{~d} x$
(d) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x$
(6) The temperature in a hot iron decreases at a rate 0.11 times the difference between its present temperature and room temperature $\left(20^{\circ} \mathrm{C}\right)$.
(a) Write a differential equation for the temperature of the iron.
(b) If the initial temperature of the rod is $100^{\circ} \mathrm{C}$, and the time is measured in minutes, how long will it take for the rod to reach a temperature of $25^{\circ} \mathrm{C}$?

