Solutions Review Problems for Exam \#1

1. Water leaks out a barrel at a rate proportional to the square root of the depth of the water at that time. If the water level starts at 36 inches and drops to 35 inches in 1 minute, how long will it take for the water to leak out of the barrel?

Solution: Let $h=h(t)$ denote the water level in the barrel at time t, where h is measured in inches and t in minutes. We then have that

$$
\begin{equation*}
\frac{d h}{d t}=-k \sqrt{h} \tag{1}
\end{equation*}
$$

where k is a constant of proportionality.
We can solve the equation in (1) by separating variables to obtain

$$
\int \frac{1}{\sqrt{h}} d h=-\int k d t
$$

which integrates to

$$
\begin{equation*}
2 \sqrt{h}=-k t+c_{1}, \tag{2}
\end{equation*}
$$

where c_{1} is an arbitrary constant. Dividing both sides of the equation in (2) by 2 and squaring, we obtain

$$
\begin{equation*}
h(t)=\left(c-\frac{k}{2} t\right)^{2} \tag{3}
\end{equation*}
$$

where we have set $c=c_{1} / 2$.
In order to find what c in (3) is, we use the information $h(0)=36$ to obtain

$$
c^{2}=36
$$

from which we obtain that $c=6$, so that (3) now becomes

$$
\begin{equation*}
h(t)=\left(6-\frac{k}{2} t\right)^{2} \tag{4}
\end{equation*}
$$

Next, use the information that $h(1)=35$ to estimate the value of k in (4). We have that

$$
\left(6-\frac{k}{2}\right)^{2}=35
$$

from which we obtain that

$$
\begin{equation*}
k=2(6-\sqrt{35}) \doteq 0.16784 \tag{5}
\end{equation*}
$$

To find the time, t, at which all the water leaks out of the barrel, se solve the equation
or

$$
\left(6-\frac{k}{2} t\right)^{2}=0
$$

to obtain that

$$
\begin{equation*}
t=\frac{12}{k} \tag{6}
\end{equation*}
$$

Using the estimate for k in (5), we obtain from (6) that

$$
t \doteq 71.5 \text { minutes }
$$

Thus, it will take about 1 hour and 11.5 minutes for the water to leak out of the barrel.
2. The rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time. If an initial dose of Q_{o} is injected directly into the blood, 20% is left in the blood after 3 hours.
(a) Write and solve a differential equation for the quantity, Q, of the drug in the blood at time, t, in hours.

Solution: Apply the conservation principle

$$
\frac{d Q}{d t}=\text { Rate of substance in }- \text { Rate of substance out, }
$$

where

$$
\text { Rate of substance in }=0
$$

and

$$
\text { Rate of substance out }=k Q \text {, }
$$

where k is a constant of proportionality. Hence,

$$
\begin{equation*}
\frac{d Q}{d t}=-k Q \tag{7}
\end{equation*}
$$

(b) How much of the drug is left in the patient's body after 6 hours if the patient is given 100 mg initially?

Solution: The solution to the differential equation (7) subject to the initial condition $Q(0)=Q_{o}$ is given by

$$
\begin{equation*}
Q(t)=Q_{o} e^{-k t}, \quad \text { for all } t \in \mathbb{R} \tag{8}
\end{equation*}
$$

To estimate the value of k, we use the information that $Q(3)=$ $0.2 Q_{o}$ to obtain the equation

$$
Q_{o} e^{-3 k}=0.2 Q_{o}
$$

which can be solved for k to obtain

$$
\begin{equation*}
k=-\frac{\ln (0.2)}{3} \doteq 0.536479 \tag{9}
\end{equation*}
$$

Next, use (8) to compute

$$
\begin{equation*}
Q(6)=Q_{o} e^{-6 k} \tag{10}
\end{equation*}
$$

Putting $Q_{o}=100 \mathrm{mg}$, and using the estimate for k in (9), we obtain from (10) that

$$
Q(6) \doteq 100 e^{-6(0.54)} \doteq 4.0 \mathrm{mg}
$$

3. Use the Fundamental Theorem of Calculus to show that $y(t)=y_{o} \exp (F(t))$, where F is the antiderivative of f with $F(0)=0$, is a solution to the initial value problem $\frac{d y}{d t}=f(t) y, \quad y(0)=y_{o}$.

Solution: Apply the Chain Rule to obtain

$$
\begin{aligned}
\frac{d y}{d t} & =y_{0} \exp ^{\prime}(F(t)) F^{\prime}(t) \\
& =y_{0} \exp (F(t)) f(t) \\
& =f(t)\left[y_{0} \exp (F(t))\right]
\end{aligned}
$$

which shows that

$$
\frac{d y}{d t}=f(t) y
$$

Next, compute

$$
y(0)=y_{o} \exp (F(0))=y_{o} \exp (0)=y_{o} .
$$

Hence, if $F: I \rightarrow \mathbb{R}$ is differentiable over some open interval I which contains 0 , with $F^{\prime}=f$ on I, and $F(0)=0$, then $y(t)=y_{o} \exp (F(t))$ for $t \in I$ solves the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=f(t) y \\
y(0)=y_{o}
\end{array}\right.
$$

4. Find a solution to the initial value problem $\frac{d y}{d t}=e^{t-y}, \quad y(0)=1$.

Solution: Write the differential equation as

$$
\frac{d y}{d t}=e^{t} e^{-y}
$$

and separate variables to obtain

$$
\int e^{y} d y=\int e^{t} d t
$$

which integrates to

$$
\begin{equation*}
e^{y}=e^{t}+c \tag{11}
\end{equation*}
$$

for arbitrary c. Using the initial condition $y(0)=1$ in (11) yields

$$
e=1+c,
$$

from which we get that

$$
\begin{equation*}
c=e-1 \tag{12}
\end{equation*}
$$

Substituting the value for c in (12) into the equation in (11) yields

$$
e^{y}=e^{t}+e-1,
$$

which can be solved for y to obtain

$$
y(t)=\ln \left[e^{t}+e-1\right], \quad \text { for all } t \in \mathbb{R} .
$$

5. Evaluate the following integrals
(a) $\int_{0}^{1} \frac{e^{-x}}{2-e^{-x}} d x$
(b) $\int \frac{1}{x \ln x} d x$
(c) $\int_{1}^{2} \frac{\ln x}{x} d x$
(d) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$

Solution:

(a) Make the change of variables $u=2-e^{-x}$, so that $d u=e^{-x} d x$. Then,

$$
\int_{0}^{1} \frac{e^{-x}}{2-e^{-x}} d x=\int_{1}^{2-e^{-1}} \frac{1}{u} d u=\ln \left(2-e^{-1}\right)
$$

(b) Make the change of variables $u=\ln x$, so that $d u=\frac{1}{x} d x$ and

$$
\begin{aligned}
\int \frac{1}{x \ln x} d x & =\int \frac{1}{u} d u \\
& =\ln |u|+c \\
& =\ln |\ln x|+c
\end{aligned}
$$

(c) Make the change of variables $u=\ln x$, so that $d u=\frac{1}{x} d x$ and

$$
\int_{1}^{2} \frac{\ln x}{x} d x=\int_{0}^{\ln 2} u d u=\frac{1}{2}[\ln 2]^{2}
$$

(d) Make the change of variables $u=\sqrt{x}$ so that $d u=\frac{1}{2 \sqrt{x}} d x$, and

$$
\begin{aligned}
\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x & =2 \int e^{u} d u \\
& =2 e^{u}+c \\
& =2 e^{\sqrt{x}}+c
\end{aligned}
$$

6. The temperature in a hot iron decreases at a rate 0.11 times the difference between its present temperature and room temperature ($20^{\circ} \mathrm{C}$).
(a) Write a differential equation for the temperature of the iron.

Solution: Let $u=u(t)$ denote the temperature of the hot iron at time t. Then,

$$
\begin{equation*}
\frac{d u}{d t}=-0.11(u-20) \tag{13}
\end{equation*}
$$

where u is measured in degrees Celsius and t in minutes.
(b) If the initial temperature of the rod is $100^{\circ} \mathrm{C}$, and the time is measured in minutes, how long will it take for the rod to reach a temperature of 25° C?

Solution: The general solution of the differential equation in (13) is

$$
\begin{equation*}
u(t)=20+c e^{-0.11 t}, \quad \text { for all } t \in \mathbb{R} \tag{14}
\end{equation*}
$$

for arbitrary constant c.
To find the value of c in (14), we use the initial condition $u(0)=$ 100 in (14) to obtain the equation

$$
20+c=100
$$

which yields

$$
\begin{equation*}
c=80 \tag{15}
\end{equation*}
$$

Substituting the value of c in (15) into the expression for u in (14), we obtain that

$$
\begin{equation*}
u(t)=20+80 e^{-0.11 t}, \quad \text { for all } t \in \mathbb{R} \tag{16}
\end{equation*}
$$

Next, we find the value of t for which $u(t)=25$, or

$$
20+80 e^{-0.11 t}=25
$$

or

$$
80 e^{-0.11 t}=5
$$

which can be solved for t to yield

$$
t=-\frac{\ln (1 / 16)}{0.11}=\frac{4 \ln 2}{0.11} \doteq 25 \text { minutes. }
$$

Thus, it will take about 25 minutes for the hot iron to reach the temperature or 25 degrees Celsius.

