
Math 31S. Rumbos Fall 2011 1

Solutions to Exam 1

1. When people smoke, carbon monoxide is released into the air. Suppose that in
a room of volume 60 m3, air containing 5% carbon monoxide is introduced at
a rate of 0.002 m3/min. (This means that 5% of the volume of incoming air is
carbon monoxide). The carbon monoxide mixes immediately with the air and
the mixture leaves the room at the same rate as it enters.

(a) Let Q = Q(t) denote the volume (in cubic meters) of carbon monoxide in
the room at any time t in minutes. Use a conservation principle to derive
a differential equation for Q.

Solution: Imagine the room as a compartment of, fixed volume,
V . In this case, V = 60 m3. Air flows into the room at rate,
F , of 0.002 cubic meters per minute. The air that flows into the
room has a concentration, ci, of carbon monoxide, where ci = 5%
(the concentration here is measured in percent volume). Let Q(t)
denote the amount of carbon monoxide present in the room at
time t. Apply the conservation principle

dQ

dt
= Rate of Q in− Rate of Q out,

where
Rate of Q in = ciF,

and
Rate of Q out = c(t)F,

where c(t) =
Q(t)

V
is the concentration of carbon monoxide in the

room at time t. Here we are assuming that the volume, V , of air
in the room is fixed, so that the rate of flow of air into the room
is the same as the rate of flow out of the room.
We then have that

dQ

dt
= ciF −

F

V
Q.

Putting in the values of F , V and ci we obtain

dQ

dt
= 10−4 − 1

3
× 10−4Q, (1)

in units of cubic meters per minute. □
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(b) Give the equilibrium solution, Q, to the differential equation in part (a).

Solution: The equilibrium point, Q,is the solution to the equa-
tion

10−4 − 1

3
× 10−4Q = 0,

which yields
Q = 3 cubic meters. (2)

□

(c) Solve the differential equation in part (a) under the assumption that the
there is no carbon monoxide in the room initially, and sketch the solution.

Solution: Rewrite the equation in (1) in the form

dQ

dt
= −1

3
× 10−4[Q−Q],

or
dQ

dt
= −k[Q−Q], (3)

where we have set

k =
1

3
× 10−4, (4)

we see that the general solution of (1) is

Q(t) = Q+ ce−kt, for t ⩾ 0, (5)

and some arbitrary constant c.
Using the condition Q(0) = 0 in (13) we obtain the equation

Q+ c = 0,

which yields c = −Q. Substituting this value for c in (13) yields

Q(t) = Q[1− e−kt], for t ⩾ 0, (6)

as a solution for (3) satisfying the initial condition Q(0) = 0. A
sketch of the solution is shown in Figure 1. □

(d) Based on your solution to part (c), give the concentration, c(t), of carbon
monoxide in the room (in percent volume) at any time t in minutes. What
happens to the value of c(t) in the long run?
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Figure 1: Sketch of graph of Q(t)

Solution: Divide the expression in (14) by V yields

c(t) =
Q

V
[1− e−kt], for all t ⩾ 0,

or
c(t) = 0.05[1− e−kt], for all t ⩾ 0, (7)

where k is as given in (4). It then follows from (7) that

lim
t→∞

c(t) = 0.05,

so that c(t) tends towards 5% in the long run. □

(e) Medical texts warn that exposure to air containing 0.1% carbon monoxide
for some time can lead to a coma. How many hours does it take for the
concentration of carbon monoxide found in part (d) to reach this level?

Solution: We need to find the time, t, for which c(t) = 0.01.
Using (7), we obtain the equation

0.05[1− e−kt] = 0.001,

which can be solved for t to yield

t =
ln(50)− ln(49)

k
,

where k is as given in (4), so that

t =̇ 606 minutes,

or about 10 hours. □
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2. Suppose that y = y(t) is a solution to the initial value problem{
dy

dt
= e−t

2
, t ∈ R,

y(0) = 0.
(8)

(a) Find y′ and y′′.

Solution: The derivative of y is given by the differential equation
in (8) as

y′(t) = e−t
2

, for all t ∈ R. (9)

Next, differentiate y′(t) in (9) with respect to t to obtain

y′′(t) = −2t e−t
2

, for all t ∈ R, (10)

where we have applied the Chain Rule. □

(b) Determine the values of t for which y(t) increases or decreases, and the
values of t for which the graph of y = y(t) is concave up or concave down.
Sketch the graph of y = y(t) given that

∫∞
0
e−x

2
dx =

√
�/2.

Solution: Since the exponential function is always positive, it
follows from (9) that y′(t) > 0 for all t ∈ R, so that y(t) increases
for all values of t.
Similarly, we obtain from (10) y′′(t) > 0 for t < 0, and y′′(t) < 0
for t > 0; so that, the graph of y = y(t) is concave up for t < 0
and concave down for t > 0.
A sketch of the graph of y = y(t) is shown in Figure 2. □

3. Assume that the relative growth rate of a certain animal population is governed
by the equation

1

N

dN

dt
= ko e

−t, (11)

where N = N(t) is the number of individuals in the population t units of time
from the time we start observing the population, and ko is a positive constant.

(a) Give an interpretation for this model and explain how it differs from the
Malthus model for population growth.

Solution: The equation in (11) models a situation in which the
per capita growth rate decreases exponentially with time. This is
to be contrasted with the Malthusian model for population growth
in which the per capita growth rate remains constant. □
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Figure 2: Sketch of graph of y = y(t)

(b) Use separation of variables to find a solution to (11) subject to the initial
condition N(0) = No.

Solution: Separate variables to obtain∫
1

N
dN =

∫
ko e

−t dt,

which integrates to

ln ∣N ∣ = −koe−t + c1, (12)

for some constant c1. Taking the exponential function on both
sides of (12) yields

∣N ∣ = c2 exp(−koe−t), (13)

where we have set c2 = ec1 . Finally, using the continuity of the
exponential function, we obtain from (??) that

N(t) = c exp(−koe−t), for all t ∈ R, (14)

for a constant c. Using the initial condition N(0) = No, we obtain
from (??) that

c exp(−ko) = No,

which yields
c = No exp(ko). (15)
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Substituting the value of c in (15) into (??) yields

N(t) = No exp(ko(1− e−t)), for all t ∈ R. (16)

□

(c) What does the model predict about the number of individuals in the pop-
ulation in the long run.

Solution: It follows from (16) that

lim
t→∞

N(t) = Noe
ko ; (17)

so that the population size will tend towards the limiting value of
ekoNo. □

(d) (Bonus) Given that the population doubles after one unit of time, find ko
and compute

lim
t→∞

N(t).

Solution: Given that N(1) = 2No, it follows from (17) that

No exp(ko(1− e−1)) = 2No,

which can be solved for ko to yield

ko =
ln 2

1− e−1
. (18)

Combining (18) and (17) yields

lim
t→∞

N(t) = No exp(ln 2/(1− e−1)).

□


