Exam 2

Friday, December 2, 2011
Name: \qquad
Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. In this problem you will solve the linear, first-order differential equation

$$
\begin{equation*}
\frac{d y}{d t}=-y+t . \tag{1}
\end{equation*}
$$

(a) Use integration by parts to evaluate the integral $\int \tau e^{\tau} d \tau$.
(b) Explain why $\mu(t)=e^{t}$ is an integrating factor of the equation in (1).
(c) Give the general solution to the equation in (1).
2. Consider the non-linear, first-order differential equation

$$
\begin{equation*}
\frac{d y}{d t}=(y-1)(y-2) . \tag{2}
\end{equation*}
$$

(a) Give the equilibrium solutions to the equation in (2) and determine their stability properties. Justify your answers.
(b) Sketch possible solutions to the differential equation in (2).
(c) Suppose that $y=y(t)$ is a solution of (2) satisfying $y(0)=0$. Compute $\lim _{t \rightarrow \infty} y(t)$. Justify your answer.
3. In this problem you will compute the solution to the initial value problem

$$
\begin{equation*}
\frac{d y}{d t}=(y-1)(y-2), \quad y(0)=0 \tag{3}
\end{equation*}
$$

(a) Determine constants, A and B, such that

$$
\frac{1}{(y-1)(y-2)}=\frac{A}{y-1}+\frac{B}{y-2} .
$$

(b) Evaluate the integral $\int \frac{1}{(y-1)(y-2)} d y$.
(c) Use separation of variable to solve the differential equation in (3) and give its general solution.
(d) Give a formula for the solution, $y=y(t)$, to the initial value problem (3).

