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Solutions Review Problems for Exam #2

1. Suppose that the growth of a population of size N = N(t) follows the differential

equation model

dN
— =aN—-0b 1
a ¢ ’ (1)

where a and b are positive parameters.

(a) Give an interpretation for the model in (1).

Solution: Equation (1) models a population that undergoes Malthusian
growth with a constant per—capita growth rate, a, and which is being
harvested at a constant rate b. 0

(b) Describe all possible behaviors predicted by the model in (1).
Solution: The general solution to equation (1) is

b
N(t) = — +ce™, forallteR. (2)
a

Thus, since a > 0, it follows from (2) that solutions to (1) tend away

from the equilibrium value N = —. Figure 1 shows three typical solutions.

a
Examination of the sketches in Figure 1 shows that, if the initial population

17

Q|

Figure 1: Sketch of possible solutions to (1)

— b
size, N, = N(0), is larger than the equilibrium value N = —, then the

a
population will experience unlimited exponential growth. On the other
hand, if N, < N, then the population will cease to exist in finite time. [
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2. Find the equilibrium points of the differential equation

dy 2

o236 3
and determine their stability properties.

Solution: Set f(y) = y*> — 36 and write f(y) = (y + 6)(y — 6); so that, the
differential equation in (3) has two equilibrium solutions:

In order to determine the stability of 7, and ¥,, we first compute f'(y) =

2y. Since f'(—6) = —12 < 0, ¥, is asymptotically stable by the principle
of linearized stability; similarly, since f’(6) = 12 > 0, ¥, is unstable by the
principle of linearized stability. U

dN N
3. We have seen that the (continuous) logistic model = rN (1 — E) , where

r and K are positive parameters, has an equilibrium point at N = K.

N
(a) Let f(N)=rN (1 — ?> and give the linear approximation to f(N) for
N close to K.

Solution: The linear approximation to f at N = K is

L(N;N) = f(K) + [(K)(N — K) = =r(N - K).

O
(b) Let w = N — K and consider the linear differential equation

du ,

— = f(K)u.

= (K

This is called the linearization of the equation
dN
=) (W

around the equilibrium point N = K.

Use separation of variables to solve this equation. What happens to |u(t)|
as t — 0o, where u is any solution to the linearized equation?

Solution: The linearization of (4) is

du
o =T (5)
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Separation of variables leads to the general solution of (5),
u(t)=ce™, forallteR. (6)
Thus, if u is a solution to the linearized equation in (6), then
lu(t)] = |c| €™ — 0, ast— oo, (7)

since r > 0. 0

Use your result in the previous part to give an explanation as to why
any solution to the logistic equation that begins very close to K can be
approximation by K+u(t), where u is a solution to the linearized equation.

Solution: Let N = N(t) denote a solution to the differential equation in
(4), and suppose that N(0) = N, is very close to K. Put u = N — K;;
then,

du N
dt dt
= f(N)

= —r(N—-K)+E(N;K),

where E(N; K) denotes the error in the linear approximation. We then

have that
du

E:—Tu—I—E(N;K), (8)
where BV K)
L ®)

It follows from (9) and (8) that, when N, is very close to K, then the
solution, u = N — K, to (8) with N(0) = N, is very close to the solution to
the linearized equation (5). Thus, N(t) — K can be approximated by wu(t),
where u solves the linearized equation in (5) subject to u(0) = N, — K;
that is,

N(t) — K =~ u(t),

or

N(t) ~ K +u(t), (10)

where u is a solution to the linearized equation (5). O
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(d) Suppose that N = N(t) is a solution to the logistic equation that starts at
N,, where N, is very close to K. Find an estimate of the time it takes for
the distance |N(t) — K| to decrease by a factor of e. This time is called
the recovery time.

Solution: It follows from (10) and (6) that
N(t) — K ~ (N, — K)e™", for all t > 0.

so that
IN(t) — K| ~ [N, — K|e™", for all t > 0. (11)
To find the time, ¢, when

IN() - K| 1

N, — K| ¢
we use (11) to obtain the equation

e—rt — 1
e

which can be solved for ¢ to obtain
1
t=-,
,

the recovery time. O

4. Consider the first-order ordinary differential equation

d?/ 2
A S VTS 12
Y T2yt (12)

(a) Determine equilibrium points and determine the nature of the stability of
the equilibrium solutions by means of the principle of linearized stability

Solution: Put f(y) = y* — 2y + 1 and write f(y) = (y — 1)?; so that, the
differential equation in (12) has one equilibrium solution; namely,

7=1.

Since f'(y) = 2(y—1), f'(1) = 0, so that the principle of linearized stability
does not apply in this case. 0]
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(b)

Use separation of variables to find the general solution to the equation.
Solution: Use separation of variables to solve the equation

dy
i (y — 1%
We obtain .
o=/
which yields
1
_ﬁ =t+ C1, (13)

for some arbitrary constant ¢;. Multiply on both sides of the equation in
(13) by —1 and solve for y to obtain

o) =1+, (14)

for some arbitrary constant c. 0

Use your result from the previous part to determine the nature of the
stability of the equilibrium points.

Solution: Let y, be such that y, > 1, and assume that a solution y = y(¥)
to the differential equation in (12) satisfies y(0) = y,. We then obtain from

(14) that
1

= . 1
c - (15)
Substituting the value for ¢ in (15) into (14) yields the solution
Yo — 1
t)=14+ ——+— 1
to the initial value problem
dy 5
oy
{ a v TTh (17)
y(O) = Yo,

which ceases to exist at t = . Therefore, for y, > 1, the solution the

Yo —
the IVP in (17) does not exist for all ¢ > 0. Hence, y = 1 is unstable. [
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W p oy + 1;
(d) Find a solution to the IVP a Y YT 5 and determine its
y(0) = 2

maximal interval of existence.

Solution: Using the formula in (16) derived in the previous part we see
that the solution to the IVP in (17) for y, = 2 is given by

1
y(t):1+ﬁ, for t < 1.

Thus, the maximal interval of existence is (—oo, 1). O

t
5. Let F(t) = / 7%e77dr for all t € R.
0

(a) Use integration by parts to evaluate F'(t).
Solution: Set

u=72 and dv=eT dr

-7

then, du =27 dr and v=—e",

so that

/7'2€T dr = -1 7 + /2T€T dr. (18)
We integrate by parts the integral on the right-hand side of (18) by setting

u=27 and dv=e " dr

-7

then, du =2dr and v=—e",

so that
/726_7 dr = —1%¢ — 217 + 2/6_7 dr,

from which we get that
/7’26_T dr = —1%¢ 7 —21¢7T — 277+, (19)
for arbitrary ¢. Using the result in (19) we obtain that
t
F(t) = / e T dr
0

t

= [—Tze_T — 21" — 26_7}0 ,
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which yields the formula
F(t)=2—te"—2be™" — 27" (20)

for computing F(t), for ¢ > 0. O
(b) Sketch the graph of y = F'(t).

Solution: It follows from the definition of F(t) and the Fundamental
Theorem of Calculus that

F'(t) =t*"" forallt € R,

so that F'(t) > 0 for all ¢ # 0. Thus, F(t) is increasing as t in creases.
Next, compute the second derivative of F' to obtain

F't)=t(2—t)e ", foralteR. (21)

We see from the expression for F”(¢) in (21) that the sign of F”(¢) is
determined by the signs of the factors, ¢t and 2 — t. The signs of these
factors are displayed in Table 1. The concavity of the graph of y = F(t) is

t: - + +
2—t: + + -
0 2 t
f7(t): — + -
Concavity: down up down

Table 1: Concavity of the graph of y = F(t)
also shown in Table 1. From the information in the table, we also conclude

that the graph of y = F'(¢) has inflection points at the points when ¢ = 0
and t = 2. A sketch of the graph of y = F'(t) is shown in Figure 2. O

sin x

if v # 0;
1 if x =0.

6. Let g: R — R be given by g(z) =
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Figure 2: Sketch of graph of y = F(t)

(a) Use the first linear approximation to sin around a = 0, with the correspond-

sin

ing error term, to compute liH(l] ——, and conclude that the function g
T— T

defined above is continuous.

Solution: Set f(x) =sinz for all x € R. Then, the linear approximation
to f(x) =sinz is
L(z;0) = f(0) + f(0),
where f(0) = 0 and f'(0) = cosO = 1. We then have that the linear
approximation to f(z) =sinz at a =0 is
L(z;0) = z. (22)
We can then write that

sinz =z + E¢(z;0), (23)

where the error term, Ef(x;0), in using the linear approximation in (22)
to estimate sin x, for x near 0, satisfies
E¢(z;0

lim 2250 (24)

x—0 x

Next, divide the expression in (23) by z, where x # 0, to get that

SH;I :1—1—@, for x # 0. (25)

It then follows from (24) and (25) that

sinx

glcl_rf(l) ; =1 (26)
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From (26) and the definition of g we get that

lim g(x) =1 = ¢(0),

z—0
which shows that ¢ is continuous at 0. Since, for = # 0, ¢ is the ratio of
two continuous functions, whose denominator is not 0 for x # 0, it also
follows that ¢ is continuous everywhere. 0

Use the first order approximation to sin around a = 0 to find an approxi-
mation for g around a = 0. Estimate the error in the approximation.

Solution: 1t follows from (25) and the definition of g that

E¢(z:0
g(m)zl—l—m, for z # 0.
x
We therefore have that

where the error term, E,(z;0), in (27) is defined by

E,(x;0) = w, for x # 0. (28)

Thus, the first order approximation to ¢g(z) around 0 is 1, with error term
given by (28).

In order to estimate the error term, E,(x;0), we first estimate Ey(x;0) by

M
1By (r;0)| < 5 Jal?
where we can take M = 1, since |f”(x)| = |sinz| < 1 for all z € R. We
then have that 1
By (w; 0)] < laf (29)
Using the estimate for E¢(z;0) in (29), we obtain from (28) that
1
|Ey(x;0)] < §|x|, for all z € R. (30)
U

“sint
Use the result in (b) above to approximate / Tdt. How good is your
0

approximation?
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Solution: Note that

/Sl—ntdt /mg(t) dt. (31)

sint
Thus, in order to estimate / Tdt, we can use the estimate for g given

n (27).
It follows from (31) and (27) that
t x
/ st _:c+/ E,(t;0) dt, (32)
0
where E,(t;0) satisfies the estimate in (30); namely
1
|Ey(t;0)] < §|t|, for all t € R. (33)
Put .
E(z;0) = / E,(t;0) dt, for all x € R. (34)
0
We then have from (32) that
t
/ ﬂdt—av—l—E(m 0), for all z € R. (35)
. . sint
Thus, according to (35), we can approximate / —dt by x, and the

0
error in this approximation, E(z,0), for x > 0, can be estimated from (34)

and (33) as follows:
/ B, (+:0)| dt

< / L ar
0

1
< S

A similar calculation for z < 0 shows that

1
|E(z;0)] < Z!xﬁ, for all z € R.
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7. Solve the initial value problem

dy 2
— = t 0)=0
dt y+ ? y() Y

and compute tlim y(t).
—00
Solution: Rewrite the equation as

dy

= t?
at Y
and multiply by e to obtain
dy
—t —t 2 _—t
e — —e¢ =te ",
dt Y
which can be written as J
—le™ty] =%, (36)

dt
by virtue of the product rule. Integrating on both sides of (36) yields

ey = /t2et dt. (37)

In order to evaluate the integral on the right—hand side of (37), we use the result
of Problem 5 in this review sheet to get

/tet dt =2 — (2 +2t+2)e "+, (38)

where ¢ is an arbitrary constant. Substituting the result in (38) into the right—

hand side of (37) yields
ely=2—(*+2t+2)e " +c (39)
Solving for y in (40) we obtain
y(t) = 2" —t* =2t —2+ce', forallt € R. (40)
Using the initial condition, y(0) = 0, in (40) we have that ¢ = 0. Thus,
y(t) =2e' —t* =2t —2, forallt € R. (41)

It follows from (41) that tlim y(t) = +o0. O
—00
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8. Solve the initial value problem
dy
dt

Solution: The solution to the initial value problem is

= e’ sint, y(0) = 0.

t
y(t) = / e"sint dr, forallteR. (42)
0
In order to evaluate the integral on the right—hand side of (42), we use integra-

tion by parts. Set

w=sinT and dv=-¢€" dr
then, du =cosTdr and wv=e¢€",

so that
/eT sint dr = e’ sint — /eT cos Tdr. (43)
Integrate by parts the right-most integral in (43) by setting

wu=cost and dv=-¢e" dr
so that, du = —sinT dr and wv=¢".

We then get from (43) that
/eT sinT dr = e’ sinT — |:€T cosT + /eT SianT] ,
or

/eT sinT dr = e’ sinT — e’ cosT — /eT sin 7dr. (44)

Adding / e"sinTdr on both sides of (44) and dividing by 2 then yields the
integration formula
/eT sint dr = %[Sinr —cosT] + ¢, (45)

where we have added an arbitrary constant c¢. We can now use the integration
formula in (45) to evaluate y(t) in (42):
t

)

y(t) = [%[sim—com]L

© (sint t)+1
= —(SInt — Ccos —.
2 2
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9. Consider the first order differential equation

dy 3
A 46
i (46)

(a) Find all equilibrium solutions of the equation and determine the nature of
their stability.

Solution: Set f(y) =y — 4y and write

) =yly+2)(y—2).
The the differential equation in (46) has three equilibrium solutions:
Yy =-2, Y,=0 and Tyg3=2.
To determine the stability properties of the equilibrium points, we compute
f'(y) = 3y* — 4,
and evaluate
f'(=2)=8, f'(0)=-4, and [f/(2)=8.

Thus, f'(—2) > 0, so that 5, = —2 is unstable; f(0) < 0, so that 7, =0
is asymptotically stable; and f’(2) > 0, so that 75 = 2 is unstable, by the
principle of linearized stability. 0

(b) Sketch a few of the possible solutions to the equation.

Solution: Figure 3 shows a few possible solutions of the differential equa-
tion in (46). O

10. The law of mass action states that the rate of a chemical reaction is proportional
to the concentrations of the reacting substances.

Consider a chemical reaction, A + B — C, in which two substances, A and

B, react to produce a single substance, C. Assume that the reverse reaction

does not have a considerable effect and therefore can be neglected. Let y = y(t)

denote the number of kilograms of the reaction product, C, after ¢ minutes.

Suppose that the original amount of the reacting substances are 80 kilograms

and 60 kilograms. As a consequence of the law of mass action, we obtain that
dy

i k(80 —y)(60 —y)  for some constant k& > 0. (47)

That is, the rate of production of C' is proportional to the product of the
remaining amounts of the reactants A and B.
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(a)

Figure 3: Possible solutions of (46)

Sketch some possible solutions to the equation.

Solution: Set f(y) = k(80 — y)(60 — y), or f(y) = k(y — 60)(y — 80), so

that the differential equation in (47) has two equilibrium solutions

In order to determine the the stability properties of the equilibrium solu-
tions, we first compute

f'(y) = k(y — 80) + k(y — 60), (48)
where we have applied the product rule. Using (48), we compute
1'(60) = —20k < 0,

so that 7, = 60 is asymptotically stable by the principle of linearized
stability; similarly, using (48) again,we compute

£/(80) = 20k > 0,

so that 7, = 80 is unstable by the principle of linearized stability.

Using the qualitative information provided by the principle of linearized
stability, we obtain the sketches shown in Figure 4. 0

Use separation of variables to solve the above differential equation assum-
ing that y = 0 when ¢t = 0.
Solution: Using separation of variables, we obtain

1
| o=me=m =+ )
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80
60

Figure 4: Possible Solutions to the equation in (47)

In order to evaluate the integral on the left—hand side of (49), we decompose
the integrand by means of partial fractions as
1 A B

W —80)(y—60) y—80  y—o60' (50)

where the constants A and B are to be determined. Once A and B are
determined, the integral on the left—-hand side of (49) can be evaluated by
virtue of (50) to obtain

1
dy=Aln|y — 80|+ Blnl|y — 60| + c, 51
/(y—SO)(y—GO) | | | | 1)

for arbitrary constant c.

In order to determine A and B, multiply on both sides of the equation in
(50) by (y — 80)(y — 60) to obtain

1= A(y — 60) + B(y — 80),

or

Oy +1=(A+ B)y—60A — 80B. (52)

Equating corresponding coefficients for the polynomials on the each side
of (52) yields the system

A+B =0
{ ~60A—80B = 1. (53)
Solving the system in (53) yields
1 1
A=— and B=-—. (54)

20 20
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Substituting the values for A and B in (54) into (51) yields the left-hand
side of (49) so that, integrating both sides of (49),

1 1
2—Oln|y—80|—2—01n]y—60|—k‘t—l—cl, (55)
for arbitrary constant ¢;. Multiply on both sides of (55) by 20 and simplify
to obtain | 80
y J—
In | ¥— ) = 20kt 56
(=) =20+ o0

for arbitrary constant co. Taking the exponential on both sides of the
equation in (56) and using continuity, we obtain

— 80
Yy — ¢ 20kt

= 57
y — 60 ’ (57)
for arbitrary constant c.
Using the initial condition y(0) = 0, we obtain from (57) that
4
= . o8
o= (58

Substituting the value of ¢ in (58) into (57) and solving for y in (57) yields
| 240(e2M — 1)

y(t) W’ for ¢ > 0,
or ( ZOkt)
240(1 — e~
y(t) = PRy for t > 0. (59)

U

In part (b), assume also that there are 20 kilograms of the reaction product
10 minutes after the onset of the reaction. How much reaction product is
present 5 minutes later?

Solution: Given that y(10) = 20 we get from (57) and (58) that

3 4
S
2 3
which can be solved for k to yield
1
=1 =5.9x 107"
k 500 n(9/8) =5.9x 10 (60)

Using the expression for y(t) in (59) and the estimate for k in (60) we
obtain that
y(15) = 26.2 kilograms.



