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Solutions Review Problems for Exam #2

1. Suppose that the growth of a population of size N = N(t) follows the differential
equation model

dN

dt
= aN − b, (1)

where a and b are positive parameters.

(a) Give an interpretation for the model in (1).

Solution: Equation (1) models a population that undergoes Malthusian
growth with a constant per–capita growth rate, a, and which is being
harvested at a constant rate b. □

(b) Describe all possible behaviors predicted by the model in (1).

Solution: The general solution to equation (1) is

N(t) =
b

a
+ ceat, for all t ∈ ℝ. (2)

Thus, since a > 0, it follows from (2) that solutions to (1) tend away

from the equilibrium value N =
b

a
. Figure 1 shows three typical solutions.

Examination of the sketches in Figure 1 shows that, if the initial population

t

N

b

a

Figure 1: Sketch of possible solutions to (1)

size, No = N(0), is larger than the equilibrium value N =
b

a
, then the

population will experience unlimited exponential growth. On the other
hand, if No < N , then the population will cease to exist in finite time. □
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2. Find the equilibrium points of the differential equation

dy

dt
= y2 − 36, (3)

and determine their stability properties.

Solution: Set f(y) = y2 − 36 and write f(y) = (y + 6)(y − 6); so that, the
differential equation in (3) has two equilibrium solutions:

y1 = −6 and y2 = 6.

In order to determine the stability of y1 and y2, we first compute f ′(y) =
2y. Since f ′(−6) = −12 < 0, y1 is asymptotically stable by the principle
of linearized stability; similarly, since f ′(6) = 12 > 0, y2 is unstable by the
principle of linearized stability. □

3. We have seen that the (continuous) logistic model
dN

dt
= rN

(
1− N

K

)
, where

r and K are positive parameters, has an equilibrium point at N = K.

(a) Let f(N) = rN

(
1− N

K

)
and give the linear approximation to f(N) for

N close to K.

Solution: The linear approximation to f at N = K is

L(N ;N) = f(K) + f ′(K)(N −K) = −r(N −K).

□

(b) Let u = N −K and consider the linear differential equation

du

dt
= f ′(K)u.

This is called the linearization of the equation

dN

dt
= f(N) (4)

around the equilibrium point N = K.

Use separation of variables to solve this equation. What happens to ∣u(t)∣
as t→∞, where u is any solution to the linearized equation?

Solution: The linearization of (4) is

du

dt
= −ru. (5)
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Separation of variables leads to the general solution of (5),

u(t) = c e−rt, for all t ∈ ℝ. (6)

Thus, if u is a solution to the linearized equation in (6), then

∣u(t)∣ = ∣c∣ e−rt → 0, as t→∞, (7)

since r > 0. □

(c) Use your result in the previous part to give an explanation as to why
any solution to the logistic equation that begins very close to K can be
approximation by K+u(t), where u is a solution to the linearized equation.

Solution: Let N = N(t) denote a solution to the differential equation in
(4), and suppose that N(0) = No is very close to K. Put u = N − K;
then,

du

dt
=

dN

dt

= f(N)

= −r(N −K) + E(N ;K),

where E(N ;K) denotes the error in the linear approximation. We then
have that

du

dt
= −ru+ E(N ;K), (8)

where

lim
N→K

E(N ;K)

N −K
= 0. (9)

It follows from (9) and (8) that, when No is very close to K, then the
solution, u = N−K, to (8) with N(0) = No is very close to the solution to
the linearized equation (5). Thus, N(t)−K can be approximated by u(t),
where u solves the linearized equation in (5) subject to u(0) = No − K;
that is,

N(t)−K ≈ u(t),

or
N(t) ≈ K + u(t), (10)

where u is a solution to the linearized equation (5). □
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(d) Suppose that N = N(t) is a solution to the logistic equation that starts at
No, where No is very close to K. Find an estimate of the time it takes for
the distance ∣N(t) − K∣ to decrease by a factor of e. This time is called
the recovery time.

Solution: It follows from (10) and (6) that

N(t)−K ≈ (No −K)e−rt, for all t > 0.

so that
∣N(t)−K∣ ≈ ∣No −K∣e−rt, for all t > 0. (11)

To find the time, t, when

∣N(t)−K∣
∣No −K∣

=
1

e
,

we use (11) to obtain the equation

e−rt =
1

e
,

which can be solved for t to obtain

t =
1

r
,

the recovery time. □

4. Consider the first–order ordinary differential equation

dy

dt
= y2 − 2y + 1. (12)

(a) Determine equilibrium points and determine the nature of the stability of
the equilibrium solutions by means of the principle of linearized stability

Solution: Put f(y) = y2 − 2y + 1 and write f(y) = (y − 1)2; so that, the
differential equation in (12) has one equilibrium solution; namely,

y = 1.

Since f ′(y) = 2(y−1), f ′(1) = 0, so that the principle of linearized stability
does not apply in this case. □
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(b) Use separation of variables to find the general solution to the equation.

Solution: Use separation of variables to solve the equation

dy

dt
= (y − 1)2.

We obtain ∫
1

(y − 1)2
dy =

∫
dt,

which yields

− 1

y − 1
= t+ c1, (13)

for some arbitrary constant c1. Multiply on both sides of the equation in
(13) by −1 and solve for y to obtain

y(t) = 1 +
1

c− t
, (14)

for some arbitrary constant c. □

(c) Use your result from the previous part to determine the nature of the
stability of the equilibrium points.

Solution: Let yo be such that yo > 1, and assume that a solution y = y(t)
to the differential equation in (12) satisfies y(0) = yo. We then obtain from
(14) that

c =
1

yo − 1
. (15)

Substituting the value for c in (15) into (14) yields the solution

y(t) = 1 +
yo − 1

1− (yo − 1)t
(16)

to the initial value problem{
dy

dt
= y2 − 2y + 1;

y(0) = yo,
(17)

which ceases to exist at t =
1

yo − 1
. Therefore, for yo > 1, the solution the

the IVP in (17) does not exist for all t > 0. Hence, y = 1 is unstable. □
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(d) Find a solution to the IVP

{
dy

dt
= y2 − 2y + 1;

y(0) = 2,
and determine its

maximal interval of existence.

Solution: Using the formula in (16) derived in the previous part we see
that the solution to the IVP in (17) for yo = 2 is given by

y(t) = 1 +
1

1− t
, for t < 1.

Thus, the maximal interval of existence is (−∞, 1). □

5. Let F (t) =

∫ t

0

� 2e−�d� for all t ∈ ℝ.

(a) Use integration by parts to evaluate F (t).

Solution: Set

u = � 2 and dv = e−� d�
then, du = 2� d� and v = −e−� ,

so that ∫
� 2e−� d� = −� 2e−� +

∫
2�e−� d�. (18)

We integrate by parts the integral on the right–hand side of (18) by setting

u = 2� and dv = e−� d�
then, du = 2 d� and v = −e−� ,

so that ∫
� 2e−� d� = −� 2e−� − 2�e−� + 2

∫
e−� d�,

from which we get that∫
� 2e−� d� = −� 2e−� − 2�e−� − 2e−� + c, (19)

for arbitrary c. Using the result in (19) we obtain that

F (t) =

∫ t

0

� 2e−� d�

=
[
−� 2e−� − 2�e−� − 2e−�

]t
0
,
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which yields the formula

F (t) = 2− t2e−t − 2be−t − 2e−t (20)

for computing F (t), for t > 0. □

(b) Sketch the graph of y = F (t).

Solution: It follows from the definition of F (t) and the Fundamental
Theorem of Calculus that

F ′(t) = t2e−t, for all t ∈ ℝ,

so that F ′(t) > 0 for all t ∕= 0. Thus, F (t) is increasing as t in creases.
Next, compute the second derivative of F to obtain

F ′′(t) = t(2− t)e−t, for all t ∈ ℝ. (21)

We see from the expression for F ′′(t) in (21) that the sign of F ′′(t) is
determined by the signs of the factors, t and 2 − t. The signs of these
factors are displayed in Table 1. The concavity of the graph of y = F (t) is

t : − + +

2− t : + + −

0 2 t
f ′′(t) : − + −

Concavity: down up down

Table 1: Concavity of the graph of y = F (t)

also shown in Table 1. From the information in the table, we also conclude
that the graph of y = F (t) has inflection points at the points when t = 0
and t = 2. A sketch of the graph of y = F (t) is shown in Figure 2. □

6. Let g : ℝ→ ℝ be given by g(x) =

⎧⎨⎩
sinx

x
if x ∕= 0;

1 if x = 0.
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t

y

y = F (t)

Figure 2: Sketch of graph of y = F (t)

(a) Use the first linear approximation to sin around a = 0, with the correspond-

ing error term, to compute lim
x→0

sinx

x
, and conclude that the function g

defined above is continuous.

Solution: Set f(x) = sin x for all x ∈ ℝ. Then, the linear approximation
to f(x) = sinx is

L(x; 0) = f(0) + f ′(0)x,

where f(0) = 0 and f ′(0) = cos 0 = 1. We then have that the linear
approximation to f(x) = sinx at a = 0 is

L(x; 0) = x. (22)

We can then write that

sinx = x+ Ef (x; 0), (23)

where the error term, Ef (x; 0), in using the linear approximation in (22)
to estimate sinx, for x near 0, satisfies

lim
x→0

Ef (x; 0)

x
= 0. (24)

Next, divide the expression in (23) by x, where x ∕= 0, to get that

sinx

x
= 1 +

Ef (x; 0)

x
, for x ∕= 0. (25)

It then follows from (24) and (25) that

lim
x→0

sinx

x
= 1. (26)
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From (26) and the definition of g we get that

lim
x→0

g(x) = 1 = g(0),

which shows that g is continuous at 0. Since, for x ∕= 0, g is the ratio of
two continuous functions, whose denominator is not 0 for x ∕= 0, it also
follows that g is continuous everywhere. □

(b) Use the first order approximation to sin around a = 0 to find an approxi-
mation for g around a = 0. Estimate the error in the approximation.

Solution: It follows from (25) and the definition of g that

g(x) = 1 +
Ef (x; 0)

x
, for x ∕= 0.

We therefore have that

g(x) = 1 + Eg(x; 0), for x ∕= 0, (27)

where the error term, Eg(x; 0), in (27) is defined by

Eg(x; 0) =
Ef (x; 0)

x
, for x ∕= 0. (28)

Thus, the first order approximation to g(x) around 0 is 1, with error term
given by (28).

In order to estimate the error term, Eg(x; 0), we first estimate Ef (x; 0) by

∣Ef (x; 0)∣ ⩽ M

2
∣x∣2,

where we can take M = 1, since ∣f ′′(x)∣ = ∣ sinx∣ ⩽ 1 for all x ∈ ℝ. We
then have that

∣Ef (x; 0)∣ ⩽ 1

2
∣x∣2. (29)

Using the estimate for Ef (x; 0) in (29), we obtain from (28) that

∣Eg(x; 0)∣ ⩽ 1

2
∣x∣, for all x ∈ ℝ. (30)

□

(c) Use the result in (b) above to approximate

∫ x

0

sin t

t
dt. How good is your

approximation?
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Solution: Note that ∫ x

0

sin t

t
dt =

∫ x

0

g(t) dt. (31)

Thus, in order to estimate

∫ x

0

sin t

t
dt, we can use the estimate for g given

in (27).

It follows from (31) and (27) that∫ x

0

sin t

t
dt = x+

∫ x

0

Eg(t; 0) dt, (32)

where Eg(t; 0) satisfies the estimate in (30); namely

∣Eg(t; 0)∣ ⩽ 1

2
∣t∣, for all t ∈ ℝ. (33)

Put

E(x; 0) =

∫ x

0

Eg(t; 0) dt, for all x ∈ ℝ. (34)

We then have from (32) that∫ x

0

sin t

t
dt = x+ E(x; 0), for all x ∈ ℝ. (35)

Thus, according to (35), we can approximate

∫ x

0

sin t

t
dt by x, and the

error in this approximation, E(x, 0), for x > 0, can be estimated from (34)
and (33) as follows:

∣E(x; 0)∣ ⩽
∫ x

0

∣Eg(t; 0)∣ dt

⩽
∫ x

0

1

2
∣t∣ dt

⩽
1

4
∣x∣2.

A similar calculation for x < 0 shows that

∣E(x; 0)∣ ⩽ 1

4
∣x∣2, for all x ∈ ℝ.

□
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7. Solve the initial value problem

dy

dt
= y + t2, y(0) = 0,

and compute lim
t→∞

y(t).

Solution: Rewrite the equation as

dy

dt
− y = t2

and multiply by e−t to obtain

e−t
dy

dt
− e−ty = t2e−t,

which can be written as
d

dt
[e−ty] = t2e−t, (36)

by virtue of the product rule. Integrating on both sides of (36) yields

e−ty =

∫
t2e−t dt. (37)

In order to evaluate the integral on the right–hand side of (37), we use the result
of Problem 5 in this review sheet to get∫

tet dt = 2− (t2 + 2t+ 2)e−t + c, (38)

where c is an arbitrary constant. Substituting the result in (38) into the right–
hand side of (37) yields

e−ty = 2− (t2 + 2t+ 2)e−t + c (39)

Solving for y in (40) we obtain

y(t) = 2et − t2 − 2t− 2 + cet, for all t ∈ ℝ. (40)

Using the initial condition, y(0) = 0, in (40) we have that c = 0. Thus,

y(t) = 2et − t2 − 2t− 2, for all t ∈ ℝ. (41)

It follows from (41) that lim
t→∞

y(t) = +∞. □
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8. Solve the initial value problem

dy

dt
= et sin t, y(0) = 0.

Solution: The solution to the initial value problem is

y(t) =

∫ t

0

e� sin � d�, for all t ∈ ℝ. (42)

In order to evaluate the integral on the right–hand side of (42), we use integra-
tion by parts. Set

u = sin � and dv = e� d�
then, du = cos � d� and v = e� ,

so that ∫
e� sin � d� = e� sin � −

∫
e� cos �d�. (43)

Integrate by parts the right-most integral in (43) by setting

u = cos � and dv = e� d�
so that, du = − sin � d� and v = e� .

We then get from (43) that∫
e� sin � d� = e� sin � −

[
e� cos � +

∫
e� sin �d�

]
,

or ∫
e� sin � d� = e� sin � − e� cos � −

∫
e� sin �d�. (44)

Adding

∫
e� sin �d� on both sides of (44) and dividing by 2 then yields the

integration formula ∫
e� sin � d� =

e�

2
[sin � − cos � ] + c, (45)

where we have added an arbitrary constant c. We can now use the integration
formula in (45) to evaluate y(t) in (42):

y(t) =

[
e�

2
[sin � − cos � ]

]t
0

=
et

2
(sin t− cos t) +

1

2
.

□
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9. Consider the first order differential equation

dy

dt
= y3 − 4y. (46)

(a) Find all equilibrium solutions of the equation and determine the nature of
their stability.

Solution: Set f(y) = y3 − 4y and write

f(y) = y(y + 2)(y − 2).

The the differential equation in (46) has three equilibrium solutions:

y1 = −2, y2 = 0 and y3 = 2.

To determine the stability properties of the equilibrium points, we compute

f ′(y) = 3y2 − 4,

and evaluate

f ′(−2) = 8, f ′(0) = −4, and f ′(2) = 8.

Thus, f ′(−2) > 0, so that y1 = −2 is unstable; f ′(0) < 0, so that y2 = 0
is asymptotically stable; and f ′(2) > 0, so that y3 = 2 is unstable, by the
principle of linearized stability. □

(b) Sketch a few of the possible solutions to the equation.

Solution: Figure 3 shows a few possible solutions of the differential equa-
tion in (46). □

10. The law of mass action states that the rate of a chemical reaction is proportional
to the concentrations of the reacting substances.

Consider a chemical reaction, A + B → C, in which two substances, A and
B, react to produce a single substance, C. Assume that the reverse reaction
does not have a considerable effect and therefore can be neglected. Let y = y(t)
denote the number of kilograms of the reaction product, C, after t minutes.
Suppose that the original amount of the reacting substances are 80 kilograms
and 60 kilograms. As a consequence of the law of mass action, we obtain that

dy

dt
= k(80− y)(60− y) for some constant k > 0. (47)

That is, the rate of production of C is proportional to the product of the
remaining amounts of the reactants A and B.
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t

y

2

−2

Figure 3: Possible solutions of (46)

(a) Sketch some possible solutions to the equation.

Solution: Set f(y) = k(80− y)(60− y), or f(y) = k(y − 60)(y − 80), so
that the differential equation in (47) has two equilibrium solutions

y1 = 60 and y2 = 80.

In order to determine the the stability properties of the equilibrium solu-
tions, we first compute

f ′(y) = k(y − 80) + k(y − 60), (48)

where we have applied the product rule. Using (48), we compute

f ′(60) = −20k < 0,

so that y1 = 60 is asymptotically stable by the principle of linearized
stability; similarly, using (48) again,we compute

f ′(80) = 20k > 0,

so that y2 = 80 is unstable by the principle of linearized stability.

Using the qualitative information provided by the principle of linearized
stability, we obtain the sketches shown in Figure 4. □

(b) Use separation of variables to solve the above differential equation assum-
ing that y = 0 when t = 0.

Solution: Using separation of variables, we obtain∫
1

(y − 80)(y − 60)
dy =

∫
k dt. (49)
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t

y

80
60

Figure 4: Possible Solutions to the equation in (47)

In order to evaluate the integral on the left–hand side of (49), we decompose
the integrand by means of partial fractions as

1

(y − 80)(y − 60)
=

A

y − 80
+

B

y − 60
, (50)

where the constants A and B are to be determined. Once A and B are
determined, the integral on the left–hand side of (49) can be evaluated by
virtue of (50) to obtain∫

1

(y − 80)(y − 60)
dy = A ln ∣y − 80∣+B ln ∣y − 60∣+ c, (51)

for arbitrary constant c.

In order to determine A and B, multiply on both sides of the equation in
(50) by (y − 80)(y − 60) to obtain

1 = A(y − 60) +B(y − 80),

or
0y + 1 = (A+B)y − 60A− 80B. (52)

Equating corresponding coefficients for the polynomials on the each side
of (52) yields the system{

A+B = 0
−60A− 80B = 1.

(53)

Solving the system in (53) yields

A =
1

20
and B = − 1

20
. (54)
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Substituting the values for A and B in (54) into (51) yields the left–hand
side of (49) so that, integrating both sides of (49),

1

20
ln ∣y − 80∣ − 1

20
ln ∣y − 60∣ = kt+ c1, (55)

for arbitrary constant c1. Multiply on both sides of (55) by 20 and simplify
to obtain

ln

(
∣y − 80∣
∣y − 60∣

)
= 20kt+ c2, (56)

for arbitrary constant c2. Taking the exponential on both sides of the
equation in (56) and using continuity, we obtain

y − 80

y − 60
= c e20kt, (57)

for arbitrary constant c.

Using the initial condition y(0) = 0, we obtain from (57) that

c =
4

3
. (58)

Substituting the value of c in (58) into (57) and solving for y in (57) yields

y(t) =
240(e20kt − 1)

4e20kt − 3
, for t ⩾ 0,

or

y(t) =
240(1− e−20kt)

4− 3e−20kt
, for t ⩾ 0. (59)

□

(c) In part (b), assume also that there are 20 kilograms of the reaction product
10 minutes after the onset of the reaction. How much reaction product is
present 5 minutes later?

Solution: Given that y(10) = 20 we get from (57) and (58) that

3

2
=

4

3
⋅ e200k,

which can be solved for k to yield

k =
1

200
ln(9/8) =̇ 5.9× 10−4. (60)

Using the expression for y(t) in (59) and the estimate for k in (60) we
obtain that

y(15) =̇ 26.2 kilograms.

□


