Solutions to Additional Review Problems

1. An initial population of 50,000 inhabits a microcosm with carrying capacity of 100,000 . Suppose that, after five years, the population increases to 60,000 . Determine the intrinsic growth rate of the population.
Solution: We assume that the growth of the population is governed by the Logistic equation

$$
\begin{equation*}
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) \tag{1}
\end{equation*}
$$

where $K=10^{5}$ in this case.
The solution to the differential equation in (1) subject to the initial condition $N(0)=N_{o}$ is given by

$$
\begin{equation*}
N(t)=\frac{N_{o} K}{N_{o}+\left(K-N_{o}\right) e^{-r t}}, \quad \text { for } t \geqslant 0 . \tag{2}
\end{equation*}
$$

For the situation at hand, $N_{0}=5 \times 10^{4}$.
Given that $N(5)=6 \times 10^{4}$, we would like to determine the value of the intrinsic growth rate, r. In order to do this, we solve (2) for r. Writing N for $N(t)$ in (2) and taking reciprocals on both sides of the equation we obtain

$$
\frac{1}{N}=\frac{N_{o}+\left(K-N_{o}\right) e^{-r t}}{N_{o} K}
$$

which can be re-written as

$$
\begin{equation*}
\frac{1}{N}=\frac{1}{K}+\left(\frac{1}{N_{o}}-\frac{1}{K}\right) e^{-r t} \tag{3}
\end{equation*}
$$

The equation in (3) can now be solved for $e^{-r t}$ to yield

$$
e^{-r t}=\frac{\frac{1}{N}-\frac{1}{K}}{\frac{1}{N_{o}}-\frac{1}{K}},
$$

or

$$
\begin{equation*}
e^{-r t}=\frac{N_{o}}{N} \cdot \frac{K-N}{K-N_{o}} \tag{4}
\end{equation*}
$$

Taking reciprocals on both sides of (4) yields

$$
\begin{equation*}
e^{r t}=\frac{N\left(K-N_{o}\right)}{N_{o}(K-N)} . \tag{5}
\end{equation*}
$$

Taking the natural logarithm on both sides of (5) and solving for r, we obtain

$$
\begin{equation*}
r=\frac{1}{t} \ln \left(\frac{N\left(K-N_{o}\right)}{N_{o}(K-N)}\right) . \tag{6}
\end{equation*}
$$

Substituting the values $N=6 \times 10^{4}, N_{o}=5 \times 10^{4}, K=10^{5}$, and $t=5$ into (6) yields

$$
r=\frac{1}{5} \ln \left(\frac{3}{2}\right) .
$$

2. Hydrocoden bitartrate is prescription drug used as a cough suppressant and pain reliever. Assume the drug is eliminated from the body by a natural decay process with half-life of 3.8 hours. The usual dose is 10 mg every 6 hours.
(a) Use a conservation principle to derive a differential equation satisfied by the amount $Q(t)$ of the drug in the patient after a dose.
Solution: Model the patient's bloodstream as a compartment of fixed volume. Let $Q=Q(t)$ denote the amount of drug in the compartment at time t. Apply the conservation principle

$$
\begin{equation*}
\frac{d Q}{d t}=\text { Rate of } Q \text { in - Rate of } Q \text { out, } \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\text { Rate of } Q \text { in } & =0, \tag{8}\\
\text { Rate of } Q \text { out } & =\lambda Q, \tag{9}
\end{align*}
$$

with $\lambda>0$ being a constant of proportionality.
Combining the equations (7)-(9), we obtain the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=-\lambda Q \tag{10}
\end{equation*}
$$

(b) Assume that the amount of the drug in the patient prior to the dose is Q_{o} and that the drug is absorbed immediately. Give a formula for computing $Q(t)$, where t measures the length of time after the dose.
Solution: The solution to the differential equation in (10) subject to the initial condition $Q(0)=Q_{o}$ is

$$
\begin{equation*}
Q(t)=Q_{o} e^{-\lambda t}, \quad \text { for all } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

The rate constant, λ, is related to the half-life, τ_{2}, by means of the equation

$$
\begin{equation*}
\lambda=\frac{\ln 2}{\tau_{2}} \tag{12}
\end{equation*}
$$

where $\tau_{2}=3.8$ hours in this case. Combining (11) and (12) yields the formula

$$
Q(t)=Q_{o} e^{-\frac{\ln 2}{\tau_{2}} t}, \quad \text { for all } t \in \mathbb{R}
$$

or

$$
Q(t)=\frac{Q_{o}}{2^{t / 3.8}}
$$

where t is measured in hours.
3. Suppose that alcohol is introduced into a 2-liter beaker, which initially contains distilled water, at a rate of 0.1 liners per minute. Assume that the a well-mixed mixture is removed from the beaker at the same rate.
(a) Derive a differential equation for the concentration of alcohol in percent volume at any time t.
Solution: The beaker is a compartment of fixed volume $V=2$ liters. Let $Q=Q(t)$ denote the volume of alcohol in the compartment at time t. Apply the conservation principle

$$
\begin{equation*}
\frac{d Q}{d t}=\text { Rate of } Q \text { in }- \text { Rate of } Q \text { out. } \tag{13}
\end{equation*}
$$

Let F denote the rate at which alcohol flows into the beaker; in this case, $F=0.1$ liters per minute. Then,

$$
\begin{equation*}
\text { Rate of } Q \text { in }=F \text {. } \tag{14}
\end{equation*}
$$

Setting

$$
\begin{equation*}
c(t)=\frac{Q(t)}{V}, \quad \text { for all } t \tag{15}
\end{equation*}
$$

the concentration of alcohol in the beaker at time t, in percent volume, we have that

$$
\text { Rate of } Q \text { out }=c(t) F \text {, }
$$

or

$$
\begin{equation*}
\text { Rate of } Q \text { out }=\frac{F}{V} Q \tag{16}
\end{equation*}
$$

by virtue of (15).
Combining the equations (13), (14) and (16), we obtain the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=F-\frac{F}{V} Q \tag{17}
\end{equation*}
$$

for the volume of alcohol in the beaker at time t.
Next, divide the equation in (17) by V, and use (15) to obtain the differential equation

$$
\frac{d c}{d t}=\frac{F}{V}-\frac{F}{V} c,
$$

or

$$
\begin{equation*}
\frac{d c}{d t}=-\frac{F}{V}(c-1) . \tag{18}
\end{equation*}
$$

(b) How long will it take for the concentration of alcohol to reach 50% ?

Solution: In order to answer this question, we solve the differential equation in (18) subject to the initial condition $c(0)=0$, since the beaker starts one with 2 liters of distilled water. The solution to this initial value problem is

$$
\begin{equation*}
c(t)=1-e^{-\frac{F}{V} t} \tag{19}
\end{equation*}
$$

where t is measured in minutes.
Next, we solve the equation

$$
c(t)=0.5
$$

where $c(t)$ is given by (19), to obtain

$$
t=\frac{V}{F} \ln 2 \doteq 13.86 \text { minutes. }
$$

4. The rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time.
(a) Write and solve a differential equation for the quantity, Q, of the drug in the blood at time, t, in hours.

Solution: Model the bloodstream as a compartment and let $Q(t)$ denote the amount of the drug in the compartment. Apply the conservation principle

$$
\begin{equation*}
\frac{d Q}{d t}=\text { Rate of } Q \text { in }- \text { Rate of } Q \text { out, } \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
\text { Rate of } Q \text { in } & =0, \tag{21}\\
\text { Rate of } Q \text { out } & =k Q, \tag{22}
\end{align*}
$$

with $k>0$ being a constant of proportionality.
Combining the equations (20)-(22), we obtain the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=-k Q \tag{23}
\end{equation*}
$$

(b) Assume that 30% is left in the blood after 4 hours. How much of the drug is left in the patient's body after 6 hours if the patient is given 100 mg initially?
Solution: The solution to the differential equation in (23) subject to the initial condition $Q(0)=Q_{o}$ is given by

$$
\begin{equation*}
Q(t)=Q_{o} e^{-k t}, \quad \text { for all } t \in \mathbb{R} \tag{24}
\end{equation*}
$$

Given that $Q(3)=0.3 Q_{o}$, we obtain from (24) that

$$
Q_{o} e^{-3 k}=0.3 Q_{o}
$$

which can be solved for k to yield

$$
\begin{equation*}
k=-\frac{1}{3} \ln (0.3) \doteq 0.40 \tag{25}
\end{equation*}
$$

Using the estimate for k in (25) we obtain that

$$
Q(6)=100 e^{-6 k} \doteq 9
$$

so that there are about 9 mg of the drug left in the patient's body after 6 hours.

