Solutions to Assignment \#10

1. For real numbers a and b with $a<b$, let (a, b) denote the open interval from a to b :

$$
(a, b)=\{x \in \mathbb{R} \mid a<x<b\} .
$$

A subset, D, of the real numbers is said to be dense in \mathbb{R} if and only if for every open interval, (a, b),

$$
(a, b) \cap D \neq \emptyset ;
$$

that is, the intersection of any open interval with D is nonempty.
Use the fact that between any two distinct real numbers there exists a rational number to prove that \mathbb{Q} is dense in \mathbb{R} according to the definition given above.
Solution: We show that $(a, b) \cap \mathbb{Q} \neq \emptyset$ for any, nonempty open interval (a, b).
Proof: Since (a, b) is not empty, $a<b$. Next, use the fact that between any two distinct real numbers there exists a rational number to get $q \in \mathbb{Q}$ such that

$$
a<q<b .
$$

Thus, $q \in(a, b)$ and therefore $q \in(a, b) \cap \mathbb{Q}$. Hence, $(a, b) \cap \mathbb{Q}$ is not empty.
2. Show that \mathbb{Z} is not dense in \mathbb{R}.

Solution: Observe that the interval $(0,1)$ contains no integers. For if $m \in \mathbb{Z}$ and $m \in(0,1)$ then $m>0$ and $m<1$. However, $m \geqslant 1$, since $m \in \mathbb{N}$. We have therefore arrived at a contradiction. Thus, $(0,1) \cap \mathbb{Z}=\emptyset$ and therefore \mathbb{Z} cannot be dense in \mathbb{R}.
3. Let $a, b \in \mathbb{R}$ with $a<b$. Prove that the set $(a, b) \cap \mathbb{Q}$ is infinite.

Proof: Assume by way of contradiction that $(a, b) \cap \mathbb{Q}$ is finite. Then,

$$
\begin{equation*}
(a, b) \cap \mathbb{Q}=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}, \tag{1}
\end{equation*}
$$

where the rational numbers $q_{1}, q_{2}, \ldots, q_{n}$ may be ordered as follows:

$$
\begin{equation*}
a<q_{1}<q_{2}<\cdots<q_{n}<b . \tag{2}
\end{equation*}
$$

Since there is a rational number, q, such that

$$
\begin{equation*}
q_{n}<q<b \tag{3}
\end{equation*}
$$

it follows from (2) that $q \in(a, b)$. Thus, $q \in(a, b) \cap \mathbb{Q}$. However, q is not listed in the definition (1) since $q>q_{i}$ for $i=1,2, \ldots, n$, by the inequalities in (2) and (3). We have therefore arrived at a contradiction. Consequently, $(a, b) \cap \mathbb{Q}$ is infinite.
4. Given sets A and B, the set of elements in A which are not in B is denoted by $A \backslash B$; that is,

$$
A \backslash B=\{x \in A \mid x \notin B\} .
$$

Thus, for instance, the set $\mathbb{R} \backslash \mathbb{Q}$ is the set of irrational numbers.
Prove that $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.
Proof: We need to show that $(a, b) \cap(\mathbb{R} \backslash \mathbb{Q}) \neq \emptyset$ for any nonempty open interval (a, b).
Let (a, b) be a nonempty open interval of real numbers. Then,

$$
a<b .
$$

By the result of Problem 5 in Assignment \#9, there exists and irrational number, α, between a and b. Thus, $\alpha \in(a, b)$ and therefore

$$
\alpha \in(a, b) \cap(\mathbb{R} \backslash \mathbb{Q}),
$$

which shows that $(a, b) \cap(\mathbb{R} \backslash \mathbb{Q})$ is not empty. Hence, $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.
5. Let $q \in \mathbb{Q}$ and α be an irrational number. Prove that
(a) if $q \neq 0$, then $q \alpha$ is irrational.

Proof: Let $q \in \mathbb{Q}, q \neq 0$, and $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Assume, by way of contradiction, that $q \alpha$ is rational. It then follows that $q^{-1}(q \alpha) \in \mathbb{Q}$ since \mathbb{Q} is a field. Consequently, $\alpha \in \mathbb{Q}$, which is a contradiction. Therefore, $q \alpha$ is irrational, if $q \in \mathbb{Q}$ and $q \neq 0$.
(b) $q+\alpha$ is irrational for all $q \in \mathbb{Q}$.

Proof: Let $q \in \mathbb{Q}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Assume, by way of contradiction, that $q+\alpha$ is rational. It then follows that $(q+\alpha)-q \in \mathbb{Q}$ since \mathbb{Q} is a field. Consequently, $\alpha \in \mathbb{Q}$, which is a contradiction. Therefore, $q+\alpha$ is irrational.
(c) What can you say about α^{q} ? Answer: α^{q} could be rational or irrational.

For instance, if $\alpha=\sqrt{2}$ and $q=1$, then $\alpha^{q}=\sqrt{2}$, which is irrational. On the other hand, if if $\alpha=\sqrt{2}$ and $q=2$, then $\alpha^{q}=2$, which is rational.

