Assignment \#11

Due on Wednesday, November 7, 2012
Read Chapter 5 on Upper Bounds and Suprema, pp. 80-85, in Schramm's text.
Read Section 9.2 on Convergence, pp. 147-150, in Schramm's text.
Do the following problems

1. Use the fact that $\sqrt{2}=\sup \left\{q \in \mathbb{Q} \mid q>0\right.$ and $\left.q^{2}<2\right\}$ to prove that there exists a sequence of rational numbers, $\left(q_{n}\right)$, such that

$$
\lim _{n \rightarrow \infty} q_{n}=\sqrt{2}
$$

2. Let $\left(\varepsilon_{n}\right)$ denote a sequence of positive numbers which converges to 0 . Let $\left(x_{n}\right)$ be a sequence of real numbers and $x \in \mathbb{R}$. Assume there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|x_{n}-x\right| \leqslant \varepsilon_{n} \quad \text { for all } n \geqslant N_{1}
$$

Prove that $\left(x_{n}\right)$ converges to x.
3. Let $x_{n}=\frac{1}{n!}$ for $n \in \mathbb{N}$. Prove that the sequence $\left(x_{n}\right)$ converges to 0 .
4. Let $\left(x_{n}\right)$ be a sequence of real numbers converging to $a \neq 0$. Prove that there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|x_{n}\right|>\frac{|a|}{2}
$$

5. Let $\left(x_{n}\right)$ be a sequence of non-zero, real numbers converging to $a \neq 0$. Prove that the set $A=\left\{\left.\frac{1}{x_{n}} \right\rvert\, n \in \mathbb{N}\right\}$ is bounded.
