Assignment #11

Due on Wednesday, November 7, 2012

Read Chapter 5 on Upper Bounds and Suprema, pp. 80–85, in Schramm's text. **Read** Section 9.2 on Convergence, pp. 147–150, in Schramm's text.

Do the following problems

1. Use the fact that $\sqrt{2} = \sup\{q \in \mathbb{Q} \mid q > 0 \text{ and } q^2 < 2\}$ to prove that there exists a sequence of rational numbers, (q_n) , such that

$$\lim_{n \to \infty} q_n = \sqrt{2}.$$

2. Let (ε_n) denote a sequence of positive numbers which converges to 0. Let (x_n) be a sequence of real numbers and $x \in \mathbb{R}$. Assume there exists $N_1 \in \mathbb{N}$ such that

$$|x_n - x| \leq \varepsilon_n$$
 for all $n \geq N_1$.

Prove that (x_n) converges to x.

- 3. Let $x_n = \frac{1}{n!}$ for $n \in \mathbb{N}$. Prove that the sequence (x_n) converges to 0.
- 4. Let (x_n) be a sequence of real numbers converging to $a \neq 0$. Prove that there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |x_n| > \frac{|a|}{2}.$$

5. Let (x_n) be a sequence of non-zero, real numbers converging to $a \neq 0$. Prove that the set $A = \left\{ \frac{1}{x_n} \mid n \in \mathbb{N} \right\}$ is bounded.