## Solutions to Assignment \#11

1. Use the fact that $\sqrt{2}=\sup \left\{q \in \mathbb{Q} \mid q>0\right.$ and $\left.q^{2}<2\right\}$ to prove that there exists a sequence of rational numbers, $\left(q_{n}\right)$, such that

$$
\lim _{n \rightarrow \infty} q_{n}=\sqrt{2}
$$

Proof: Write $A=\left\{q \in \mathbb{Q} \mid q>0\right.$ and $\left.q^{2}<2\right\}$. Then, $\sqrt{2}=\sup (A)$. Thus, for each $n \in \mathbb{N}$ there exists $q_{n} \in A$ such that

$$
\sqrt{2}-\frac{1}{n}<q_{n}<\sqrt{2}
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, it follows by the Squeeze Theorem for sequences that the limit of $\left(q_{n}\right)$ exists and

$$
\lim _{n \rightarrow \infty} q_{n}=\sqrt{2}
$$

2. Let $\left(\varepsilon_{n}\right)$ denote a sequence of positive numbers which converges to 0 . Let $\left(x_{n}\right)$ be a sequence of real numbers and $x \in \mathbb{R}$. Assume there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|x_{n}-x\right| \leqslant \varepsilon_{n} \quad \text { for all } n \geqslant N_{1} .
$$

Prove that $\left(x_{n}\right)$ converges to $x$.
Proof: Assume there exists $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|x_{n}-x\right| \leqslant \varepsilon_{n} \quad \text { for all } n \geqslant N_{1}, \tag{1}
\end{equation*}
$$

where $\varepsilon_{n}>0$ for all $n$ and $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$.
Let $\varepsilon>0$ be given. Then, there exists $N_{2} \in \mathbb{N}$ such that

$$
n \geqslant N_{2} \Rightarrow \varepsilon_{n}<\varepsilon .
$$

It then follows form (1) that, for $N=\max \left\{N_{1}, N_{2}\right\}$,

$$
n \geqslant N \Rightarrow\left|x_{n}-x\right|<\varepsilon
$$

which shows that $\left(x_{n}\right)$ converges to $x$.
3. Let $x_{n}=\frac{1}{n!}$ for $n \in \mathbb{N}$. Prove that the sequence $\left(x_{n}\right)$ converges to 0 .

Proof: First we prove by induction on $n$ that $n!\geqslant n$ for all $n \in \mathbb{N}$. Note that $1!=1$ and so the result is true for the base step in the induction. Next, assume that $n!\geqslant n$ and consider

$$
(n+1)!=(n+1) n!=n \cdot n!+n!
$$

By the inductive hypothesis,

$$
(n+1)!\geqslant n \cdot n+n \geqslant n+1
$$

We then have that

$$
0<\frac{1}{n!} \leqslant \frac{1}{n} \quad \text { for all } n \in \mathbb{N} .
$$

It then follows by the Squeeze Theorem, or by the result in the previous problem that

$$
\lim _{n \rightarrow \infty} \frac{1}{n!}=0
$$

4. Let $\left(x_{n}\right)$ be a sequence of real numbers converging to $a \neq 0$. Prove that there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|x_{n}\right|>\frac{|a|}{2} .
$$

Proof. Assume that $\lim _{n \rightarrow \infty} x_{n}=a$, where $a \neq 0$. Put $\varepsilon=\frac{|a|}{2}$. Then, $\varepsilon>0$ and so, by the definition of convergence, there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|x_{n}-a\right|<\varepsilon=\frac{|a|}{2}
$$

Now, by the triangle inequality

$$
|a|=\left|a-x_{n}+x_{n}\right| \leqslant\left|x_{n}-a\right|+\left|x_{n}\right|, \quad \text { for } n \geqslant N
$$

from which we get that

$$
|a|<\frac{|a|}{2}+\left|x_{n}\right|, \quad \text { for } n \geqslant N
$$

The result then follows by adding $-\frac{|a|}{2}$ on both sides of the previous inequality.
5. Let $\left(x_{n}\right)$ be a sequence of non-zero, real numbers converging to $a \neq 0$. Prove that the set $A=\left\{\left.\frac{1}{x_{n}} \right\rvert\, n \in \mathbb{N}\right\}$ is bounded.

Proof: Let $x_{n} \neq 0$ for all $n \in \mathbb{N}$ and assume that

$$
\lim _{n \rightarrow \infty} x_{n}=a, \text { where } a \neq 0
$$

Then, by the result in the previous problem, there exists $N \in \mathbb{N}$ such that

$$
\left|x_{n}\right|>\frac{|a|}{2} \quad \text { for all } n \geqslant N
$$

We then have that

$$
\frac{1}{\left|x_{n}\right|}<\frac{2}{|a|} \quad \text { for all } n \geqslant N
$$

Setting $M=\max \left\{\frac{1}{\left|x_{1}\right|}, \frac{1}{\left|x_{2}\right|}, \ldots \frac{1}{\left|x_{N-1}\right|}, \frac{2}{|a|}\right\}$, we see that

$$
\frac{1}{\left|x_{n}\right|} \leqslant M \quad \text { for all } n \in \mathbb{N}
$$

that is, the set $A=\left\{\left.\frac{1}{x_{n}} \right\rvert\, n \in \mathbb{N}\right\}$ is bounded.

