Assignment #12

Due on Friday, November 9, 2012

Read Section 9.2 on *Convergence*, pp. 147–150, in Schramm's text.

Read Section 9.3 on Convergent Sequences, p. 150, in Schramm's text.

Read Section 9.4 on Sequences and Order, pp. 151–152, in Schramm's text.

Read Section 9.5 on Sequences and Algebra, p. 153, in Schramm's text.

Do the following problems

1. Let (x_n) denote a sequence of real numbers. Prove that if $\lim_{n\to\infty} |x_n| = 0$, then (x_n) converges to 0.

2. Let
$$x_n = \frac{(-1)^{n+1}}{\sqrt{n}}$$
 for all $n \in \mathbb{N}$. Prove that (x_n) converges to 0.

- 3. Let (x_n) denote a sequence of real numbers.
 - (a) Prove that if (x_n) converges then $(|x_n|)$ converges.
 - (b) Show that the converse of the statement in part (a) is not true.
- 4. Let (x_n) and (y_n) denote two convergent sequences. Suppose there exists some $N_1 \in \mathbb{N}$ such that

$$n \geqslant N_1 \Rightarrow x_n \leqslant y_n.$$

Prove that

$$\lim_{n \to \infty} x_n \leqslant \lim_{n \to \infty} y_n.$$

- 5. Let (x_n) and (y_n) denote sequences of real numbers. Determine whether the following statements are true or false. If false, provide a counterexample. If true provide an argument to establish the statement as true.
 - (a) If (x_n) converges and $(x_n \cdot y_n)$ converges, then (y_n) converges.
 - (b) If (x_n) converges and $(x_n + y_n)$ converges, then (y_n) converges.