Solutions to Assignment #12

1. Let (x_n) denote a sequence of real numbers. Prove that if $\lim_{n\to\infty} |x_n| = 0$, then (x_n) converges to 0.

Proof: Assume that $\lim_{n\to\infty} |x_n| = 0$. Then, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \geqslant N \Rightarrow ||x_n| - 0| < \varepsilon$$

Thus,

$$n \geqslant N \Rightarrow |x_n| < \varepsilon,$$

or

$$n \geqslant N \Rightarrow |x_n - 0| < \varepsilon,$$

which shows that

$$\lim_{n \to \infty} x_n = 0$$

Hence, (x_n) converges to 0.

2. Let $x_n = \frac{(-1)^{n+1}}{\sqrt{n}}$ for all $n \in \mathbb{N}$. Prove that (x_n) converges to 0.

Proof: We will prove that $(|x_n|)$ converges to 0; thus, by the result of Problem 1, we will have prove that (x_n) converges to 0.

Observe that $|x_n| = \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$. Thus, we will prove that

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0. \tag{1}$$

Let $\varepsilon > 0$ be given; then, $\varepsilon^2 > 0$. Thus, by the Archimedean Property, there exists $N \in \mathbb{N}$ such that

$$\frac{1}{N} < \varepsilon^2.$$

Thus, $n \ge N$ implies that

$$0 < \frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{N}} < \varepsilon.$$

Hence,

$$n \geqslant N \Rightarrow \left|\frac{1}{\sqrt{n}} - 0\right| < \varepsilon$$

This completes the proof of the limit in (1).

- 3. Let (x_n) denote a sequence of real numbers.
 - (a) Prove that if (x_n) converges then $(|x_n|)$ converges.

Proof: Assume that (x_n) converges to x. We show that $(|x_n|)$ converges to |x|.

Let $\varepsilon > 0$ be given. Then, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |x_n - x| < \varepsilon.$$

Then, by the triangle inequality,

$$n \ge N \Rightarrow ||x_n| - |x|| \le |x_n - x| < \varepsilon,$$

which shows that

$$\lim_{n \to \infty} |x_n| = |x|.$$

- (b) Show that the converse of the statement in part (a) is not true. **Solution:** Let $x_n = (-1)^n$ for $n \in \mathbb{N}$ and observe that $|x_n| = 1$ for all n, so that $(|x_n|)$ converges to 1. However, (x_n) does not converge. \Box
- 4. Let (x_n) and (y_n) denote two convergent sequences. Suppose there exists some $N_1 \in \mathbb{N}$ such that

$$n \ge N_1 \Rightarrow x_n \leqslant y_n.$$

$$\lim_{n \to \infty} x_n \leqslant \lim_{n \to \infty} y_n.$$
(2)

Proof: Let $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} y_n = b$. For $\varepsilon > 0$ arbitrary, there exist n_2 and n_3 in N such that

$$n \ge n_2 \Rightarrow a - \frac{\varepsilon}{2} < x_n < a + \frac{\varepsilon}{2}$$

and

Prove that

$$n \ge n_3 \Rightarrow b - \frac{\varepsilon}{2} < y_n < b + \frac{\varepsilon}{2}$$

Then, for $n \ge \max\{n_1, n_2, n_3\},\$

$$a - \frac{\varepsilon}{2} < x_n \leqslant y_n < b + \frac{\varepsilon}{2}$$

Thus, $a < b + \varepsilon$, for arbitrary $\varepsilon > 0$. Hence, $a \leq b$, which is the inequality in (2).

Math 101. Rumbos

- 5. Let (x_n) and (y_n) denote sequences of real numbers. Determine whether the following statements are true or false. If false, provide a counterexample. If true provide an argument to establish the statement as true.
 - (a) If (x_n) converges and $(x_n \cdot y_n)$ converges, then (y_n) converges. **Solution**: The statement is false. Consider

$$x_n = \frac{1}{n}$$
 and $y_n = (-1)^n$,

for all $n \in \mathbb{N}$. Then, $(x_n y_n)$ converges to 0, (x_n) converges to 0, but (y_n) does not converge.

(b) If (x_n) converges and $(x_n + y_n)$ converges, then (y_n) converges. **Solution**: This statement is true.

Proof: Assume that (x_n) and $(x_n + y_n)$ converge. Then, since

$$y_n = (x_n + y_n) + (-x_n)$$
 for all $n \in \mathbb{N}$,

 (y_n) is the sum of two convergent series. Therefore, it converges.