Solutions to Assignment \#1

1. Use a Truth Table to establish the following equivalences known as one of De Morgan's laws:
(a) $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$

Solution:

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg(P \wedge Q)$	$\neg P \vee \neg Q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

Observe that the columns corresponding to $\neg(P \wedge Q)$ and $\neg P \vee \neg Q$ have the same truth values. Thus, $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$.
(b) $\neg(P \vee Q) \equiv \neg P \wedge \neg Q$

Solution:

P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg(P \vee Q)$	$\neg P \wedge \neg Q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T

Observe that the columns corresponding to $\neg(P \vee Q)$ and $\neg P \wedge \neg Q$ have the same truth values. Thus, $\neg(P \vee Q) \equiv \neg P \wedge \neg Q$.
2. Prove the following distributive properties
(a) $P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)$

Solution:

P	Q	R	$Q \vee R$	$P \wedge Q$	$(P \wedge R)$	$P \wedge(Q \vee R)$	$(P \wedge Q) \vee(P \wedge R)$
T							
T	T	F	T	T	F	T	T
T	F	T	T	F	T	T	T
T	F						
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F							

Observe that the columns corresponding to $P \wedge(Q \vee R)$ and $(P \wedge Q) \vee(P \wedge R)$ have the same truth values. Thus,

$$
P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)
$$

(b) $P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)$

Solution:

P	Q	R	$Q \wedge R$	$P \vee Q$	$P \vee R$	$P \vee(Q \wedge R)$	$(P \vee Q) \wedge(P \vee R)$
T							
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T						
F	T	F	F	T	F	F	F
F	F	T	F	F	T	F	F
F							

Observe that the columns corresponding to $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge(P \vee R)$ have the same truth values. Thus,

$$
P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)
$$

3. Establish the following rule of reasoning known as Modus Ponens:

$$
[(P \Rightarrow Q) \wedge P] \Rightarrow Q
$$

Solution:

P	Q	$P \Rightarrow Q$	$(P \Rightarrow Q) \wedge P$	$[(P \Rightarrow Q) \wedge P] \Rightarrow Q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Observe that the values in the column corresponding to $[(P \Rightarrow Q) \wedge P] \Rightarrow Q$ are always true. This establishes the result.
4. Establish the Disjunctive Syllogism:

$$
[(P \vee Q) \wedge(\neg Q)] \Rightarrow P
$$

Solution:

P	Q	$\neg Q$	$(P \vee Q)$	$[(P \vee Q) \wedge(\neg Q)]$	$[(P \vee Q) \wedge(\neg Q)] \Rightarrow P$
T	T	F	T	F	T
T	F	T	T	T	T
F	T	F	T	F	T
F	F	T	F	F	T

Observe that the truth values in the last column are always true. Thus, [$(P \vee$ $Q) \wedge(\neg Q)] \Rightarrow P$.
5. Give the negations of the following statements.
(a) $\forall \varepsilon>0 \exists n \geqslant 1$ such that $\frac{1}{n}<\varepsilon$.

Answer: $\exists \varepsilon>0$ such that $\forall n \geqslant 1, \frac{1}{n} \geqslant \varepsilon$
(b) $\forall \varepsilon>0 \exists a \in A$ such that $a<\varepsilon$.

Answer: $\exists \varepsilon>0$ such that $\forall a \in A, a \geqslant \varepsilon$

