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Solutions to Assignment #2

1. Let P , Q and R denote propositions. Use a truth–table to verify that the
implication P ⇒ (Q ∨R) is logically equivalent to (P ∧ ¬Q)⇒ R.

Solution:

P Q R ¬Q Q ∨R P ∧ ¬Q P ⇒ (Q ∨R) (P ∧ ¬Q)⇒ R
T T T F T F T T
T T F F T F T T
T F T T T T T T
T F F T F T F F
F T T F T F T T
F T F F T F T T
F F T T T F T T
F F F T F F T T

Since the truth–values in the last two columns of the table are the same, it
follows that

[P ⇒ (Q ∨R)] ⇐⇒ [(P ∧ ¬Q)⇒ R].

□

2. Let m and n denote integers. Prove that if 2 divides mn, then either 2 divides
m or 2 divides n.

Suggestion: Use the result of the previous problem and prove the implication:
If 2 divides mn and 2 does not divide m, then 2 divides n.

Solution: By the result of the previous problem, it suffices to prove the impli-
cation

If 2 divides mn and 2 does not divide m, then 2 divides n.

Proof: Let m and n denote integers and assume that 2 divides mn and 2 does
not divide m. It then follows that

mn = 2k and m = 2ℓ + 1

for some integers k and ℓ. Substituting 2ℓ + 1 for m in the equation mn = 2k,
we then obtain that

(2ℓ + 1)n = 2k,

from which we obtain that
2ℓn + n = 2k. (1)
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Solving for n in (1) yields
n = 2k − 2ℓn,

or
n = 2(k − ℓn),

which shows that 2 divides n.

□

3. Use mathematical induction to prove that every non–empty subset of the nat-
ural numbers must have a smallest element.

Suggestion: Let A denote a non–empty subset of ℕ. We claim that A must have
a smallest element. Argue by contradiction: Assume that A has no smallest
element and let S denote the set of natural numbers that are not in A.

(a) Prove that 1 ∈ S.

(b) Prove that k ∈ S for all k ∈ {1, 2, . . . , n} implies that n + 1 ∈ S.

(c) Deduce that S = ℕ. Explain why this is a contradiction.

Proof: We argue by contradiction.

Assume that there is a non–empty subset, A, of the natural numbers which has
no smallest element. Define S to be the complement of A in ℕ; that is,

S = {n ∈ ℕ ∣ n ∕∈ A}

We show the following about S:

(a) 1 ∈ S.

To see why this is the case, observe that if 1 ∕∈ S, then 1 ∈ A, by the
definition of S, therefore 1 would be the smallest element of A. But, we
are assuming that A has no smallest element. Thus, 1 ∈ S must be true.

(b) k ∈ S, for k = 1, 2, 3 . . . , n, implies that n + 1 ∈ S.

To prove this assertion, we argue by contradiction. Assume that k ∈ S for
k = 1, 2, . . . , n and that n + 1 ∕∈ S. It then follows that n + 1 ∈ A. Hence,
since k ∕∈ A by assumption, it follows that n + 1 is the smallest element
of A. However, this contradicts the assumption that A has no smallest
element.
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(c) By the results in (a) and (b) that we have just proved, it follows from
principle of strong induction (see Theorem 4.6 on page 59 in Schramm’s
text) that S = ℕ. This then implies that A = ∅, which is a contradiction
to the assumption that A is non–empty.

The contradiction in part (c) above allows us to conclude that every non–empty
subset of ℕ must have a smallest element.

4. Find the smallest natural number that can be written as the sum of three prime
numbers, but cannot be written as the sum of two prime numbers.

Answer: The number is 11, since 11 = 3 + 3 + 5, but no two prime numbers
add up two 11. In fact, the natural numbers smaller than or equal to 11 which
can be obtained as sums of three primes are

2 + 2 + 2 = 6
2 + 2 + 3 = 7
2 + 3 + 3 = 8
2 + 2 + 5 = 9
3 + 3 + 3 = 9
2 + 3 + 5 = 10
2 + 2 + 7 = 11
2 + 7 + 2 = 11
3 + 3 + 5 = 11.

Out of these, only the number 11 is not on the list of numbers less than or equal
to 11 that can be obtained as the sum of two prime numbers; namely,

2 + 2 = 4
3 + 3 = 6
2 + 5 = 7
3 + 5 = 8
2 + 7 = 9
3 + 7 = 10
5 + 5 = 10.

□

5. Let m,n ∈ ℤ with 0 < m < n. Define S = {n− km ∣ k ∈ ℤ and n−mk ⩾ 0}.

(a) Prove that S has a smallest element and call it r.



Math 101. Rumbos Fall 2012 4

Proof: First, observe that S is non–empty since n−m > 0 so that n−m ∈
S. Thus, by the well–ordering principle, S has a smallest element, r, which
could be 0.

(b) Prove that r ∈ {0, 1, . . .m− 1}.
Suggestion: Show that r ⩾ m is impossible.

Proof: Assume, by way of contradiction, that r ⩾ m. Since, r ∈ S, there
exists k ∈ ℤ such that r = n− km. It then follows that n− km ⩾ m, from
which we get that

n− (k + 1)m ⩾ 0.

Thus, n− (k + 1)m ∈ S. However,

n− (k + 1)m = n− km−m = r −m < r,

which contradicts the fact that r is the smallest element in S. Hence, r
must lie in the set {0, 1, . . . ,m− 1}.

(c) Prove: Given positive integers, m and n, with m < n, there exist unique
integers, q and r, such that,

n = qm + r where r ∈ {0, 1, . . .m− 1}.

Note: This is a special case of the Division Algorithm.

Proof: Let r denote the smallest element of S. Then, r is unique and
r = n− qm for some integer q, where 0 ⩽ r ⩽ m− 1. Then,

n = qm + r.

To show that q is unique, assume that there is some other integer, q1, with
the property that n = q1m + r. Then, subtracting this equation from
n = qm + r,

0 = (q − q1)m,

which implies that q − q1 = 0 since m > 0. Thus, q1 = q.


