or

or

Solutions to Assignment #3

1. Let x denote a real number satisfying $x^2 = x$. Prove that either x = 0 or x = 1. (Note that $x^2 = xx$.)

Proof: Let $x \in \mathbb{R}$ and assume that $x^2 = x$ and $x \neq 0$. Subtracting the additive inverse of x, namely -x, on both sides we obtain that

$$x^{2} - x = 0,$$

$$x(x - 1) = 0,$$
(1)
where property (A view (E)) in Handout (2)

where we have used the distributive property (Axiom (F_{10}) in Handout #2). Since we are assuming that $x \neq 0$, it follows from Axiom (F_9) that there exists $x^{-1} \in \mathbb{R}$ such that

$$x^{-1}x = 1$$

Multiplying on the left by x^{-1} on both sides of equation (1) we obtain

$$x^{-1}[x(x-1)] = x^{-1}0,$$

$$x - 1 = 0,$$
 (2)

were we have used Axioms (F_7) , (F_9) , (F_8) and the fact that a0 = 0 for all $a \in \mathbb{R}$. Adding 1 on both sides of (2) yields

x = 1.

Thus, we have shown that $x^2 = x$ and $x \neq 0$ implies that x = 1, which is equivalent to $x^2 = x$ implies x = 0 or x = 1.

2. Let $a \in \mathbb{R}$. Prove that if $a \neq 0$, then the equation

$$ax = b$$

has a unique solution for every $b \in \mathbb{R}$.

Proof: Let $a \in \mathbb{R}$ and assume that $a \neq 0$. Then, by Axiom (F_9) , there exists $a^{-1} \in \mathbb{R}$ such that $a^{-1}a = 1$. Let $x = a^{-1}b$. Then, by Axioms (F_7) , (F_9) , (F_8) and (F_6) ,

$$ax = a(a^{-1}b) = b$$

which shows that $x = a^{-1}b$ is a solution of the equation

ax = b.

To show that ax = b has a unique solution, assume that x_1 and x_2 are two solutions of ax = b. Then,

 $ax_1 = b$

and

 $ax_2 = b.$

Consequently,

$$ax_1 = ax_2 \tag{3}$$

Multiplying both sides of equation (3) by a^{-1} yields, by Axioms (F_7) , (F_9) , (F_8) and (F_6) ,

$$x_1 = x_2,$$

which shows that ax = b has at most one solution.

3. Let $x \in \mathbb{R}$. Prove that (-1)x is the additive inverse of x; that is x + (-1)x = 0.

Proof. Let $x \in \mathbb{R}$. Use Axioms to compute

$$\begin{aligned} x + (-1)x &= 1x + (-1)x \\ &= (1 + (-1))x \\ &= 0x \\ &= 0, \end{aligned}$$

where we have used the fact that 0x = 0 for all real numbers x.

4. Prove that, for any real number, x,

$$(-x)^2 = x^2.$$

Fall 2012 2

Math 101. Rumbos

Proof: Let $x \in \mathbb{R}$. Using the fact that (-1)(-x) = x, where -x is the additive inverse of x, and the associative property of multiplication we find that

$$x^{2} = xx$$

= $[(-1)(-x)][(-1)(-x)]$
= $(-1)(-1)(-x)(-x)$
= $1(-x)^{2}$
= $(-x)^{2}$,

which was to be shown.

- 5. Let $a, b \in \mathbb{Q}$, where $a^2 + b^2 \neq 0$.
 - (a) Explain by $a^2 2b^2 \neq 0$. **Solution:** Since $a^2 + b^2 \neq 0$, if b = 0, then $a \neq 0$ and so $a^2 - 2b^2 = a^2 \neq 0$ in this case. Thus, we may assume that $b \neq 0$. Then, if $a^2 - 2b^2 = 0$, we have that

$$\frac{a^2}{b^2} = 2,$$
$$\left(\frac{a}{b}\right)^2 = 2,$$

or

which shows that there is $q \in \mathbb{Q}$ such that $q^2 = 2$; namely, $q = \frac{a}{b}$, since $a, b \in \mathbb{Q}$. This is impossible. Hence, $a^2 - 2b^2 \neq 0$, if $a^2 + b^2 \neq 0$.

(b) Show that the multiplicative inverse of a + b√2, namely (a + b√2)⁻¹, is of the form c + d√2, where c, d ∈ Q. Solution: Since a² - 2b² ≠ 0, by part (a), we may define rational numbers

$$c = \frac{a}{a^2 - 2b^2}$$
 and $d = \frac{-b}{a^2 - 2b^2}$,

since $a, b \in \mathbb{Q}$.

Fall 2012 3

Math 101. Rumbos

Using the distributive property we may compute

$$(a + b\sqrt{2})(c + d\sqrt{2}) = \frac{1}{a^2 - 2b^2}(a + b\sqrt{2})(a - b\sqrt{2})$$
$$= \frac{1}{a^2 - 2b^2}(a^2 - (b\sqrt{2})^2)$$
$$= \frac{1}{a^2 - 2b^2}(a^2 - 2b^2)$$
$$= 1,$$

which shows that $c + d\sqrt{2}$ is the multiplicative inverse of $a + b\sqrt{2}$. \Box