Solutions to Assignment \#3

1. Let x denote a real number satisfying $x^{2}=x$. Prove that either $x=0$ or $x=1$. (Note that $x^{2}=x x$.)

Proof: Let $x \in \mathbb{R}$ and assume that $x^{2}=x$ and $x \neq 0$. Subtracting the additive inverse of x, namely $-x$, on both sides we obtain that

$$
x^{2}-x=0
$$

or

$$
\begin{equation*}
x(x-1)=0, \tag{1}
\end{equation*}
$$

where we have used the distributive property (Axiom (F_{10}) in Handout \#2). Since we are assuming that $x \neq 0$, it follows from Axiom $\left(F_{9}\right)$ that there exists $x^{-1} \in \mathbb{R}$ such that

$$
x^{-1} x=1 .
$$

Multiplying on the left by x^{-1} on both sides of equation (1) we obtain

$$
x^{-1}[x(x-1)]=x^{-1} 0,
$$

or

$$
\begin{equation*}
x-1=0, \tag{2}
\end{equation*}
$$

were we have used Axioms $\left(F_{7}\right),\left(F_{9}\right),\left(F_{8}\right)$ and the fact that $a 0=0$ for all $a \in \mathbb{R}$. Adding 1 on both sides of (2) yields

$$
x=1
$$

Thus, we have shown that $x^{2}=x$ and $x \neq 0$ implies that $x=1$, which is equivalent to $x^{2}=x$ implies $x=0$ or $x=1$.
2. Let $a \in \mathbb{R}$. Prove that if $a \neq 0$, then the equation

$$
a x=b
$$

has a unique solution for every $b \in \mathbb{R}$.

Proof: Let $a \in \mathbb{R}$ and assume that $a \neq 0$. Then, by Axiom (F_{9}), there exists $a^{-1} \in \mathbb{R}$ such that $a^{-1} a=1$. Let $x=a^{-1} b$. Then, by Axioms $\left(F_{7}\right),\left(F_{9}\right),\left(F_{8}\right)$ and $\left(F_{6}\right)$,

$$
a x=a\left(a^{-1} b\right)=b,
$$

which shows that $x=a^{-1} b$ is a solution of the equation

$$
a x=b \text {. }
$$

To show that $a x=b$ has a unique solution, assume that x_{1} and x_{2} are two solutions of $a x=b$. Then,

$$
a x_{1}=b
$$

and

$$
a x_{2}=b .
$$

Consequently,

$$
\begin{equation*}
a x_{1}=a x_{2} \tag{3}
\end{equation*}
$$

Multiplying both sides of equation (3) by a^{-1} yields, by Axioms $\left(F_{7}\right),\left(F_{9}\right),\left(F_{8}\right)$ and $\left(F_{6}\right)$,

$$
x_{1}=x_{2},
$$

which shows that $a x=b$ has at most one solution.
3. Let $x \in \mathbb{R}$. Prove that $(-1) x$ is the additive inverse of x; that is $x+(-1) x=0$.

Proof. Let $x \in \mathbb{R}$. Use Axioms to compute

$$
\begin{aligned}
x+(-1) x & =1 x+(-1) x \\
& =(1+(-1)) x \\
& =0 x \\
& =0
\end{aligned}
$$

where we have used the fact that $0 x=0$ for all real numbers x.
4. Prove that, for any real number, x,

$$
(-x)^{2}=x^{2}
$$

Proof: Let $x \in \mathbb{R}$. Using the fact that $(-1)(-x)=x$, where $-x$ is the additive inverse of x, and the associative property of multiplication we find that

$$
\begin{aligned}
x^{2} & =x x \\
& =[(-1)(-x)][(-1)(-x)] \\
& =(-1)(-1)(-x)(-x) \\
& =1(-x)^{2} \\
& =(-x)^{2},
\end{aligned}
$$

which was to be shown.
5. Let $a, b \in \mathbb{Q}$, where $a^{2}+b^{2} \neq 0$.
(a) Explain by $a^{2}-2 b^{2} \neq 0$.

Solution: Since $a^{2}+b^{2} \neq 0$, if $b=0$, then $a \neq 0$ and so $a^{2}-2 b^{2}=a^{2} \neq 0$ in this case. Thus, we may assume that $b \neq 0$. Then, if $a^{2}-2 b^{2}=0$, we have that

$$
\frac{a^{2}}{b^{2}}=2
$$

or

$$
\left(\frac{a}{b}\right)^{2}=2
$$

which shows that there is $q \in \mathbb{Q}$ such that $q^{2}=2$; namely, $q=\frac{a}{b}$, since $a, b \in \mathbb{Q}$. This is impossible. Hence, $a^{2}-2 b^{2} \neq 0$, if $a^{2}+b^{2} \neq 0$.
(b) Show that the multiplicative inverse of $a+b \sqrt{2}$, namely $(a+b \sqrt{2})^{-1}$, is of the form $c+d \sqrt{2}$, where $c, d \in \mathbb{Q}$. Solution: Since $a^{2}-2 b^{2} \neq 0$, by part (a), we may define rational numbers

$$
c=\frac{a}{a^{2}-2 b^{2}} \quad \text { and } \quad d=\frac{-b}{a^{2}-2 b^{2}},
$$

since $a, b \in \mathbb{Q}$.

Using the distributive property we may compute

$$
\begin{aligned}
(a+b \sqrt{2})(c+d \sqrt{2}) & =\frac{1}{a^{2}-2 b^{2}}(a+b \sqrt{2})(a-b \sqrt{2}) \\
& =\frac{1}{a^{2}-2 b^{2}}\left(a^{2}-(b \sqrt{2})^{2}\right) \\
& =\frac{1}{a^{2}-2 b^{2}}\left(a^{2}-2 b^{2}\right) \\
& =1
\end{aligned}
$$

which shows that $c+d \sqrt{2}$ is the multiplicative inverse of $a+b \sqrt{2}$.

