Solutions to Assignment \#4

1. Let $a, b \in \mathbb{R}$. Prove that

$$
a^{2}+b^{2}=0 \text { if and only if } a=0 \text { and } b=0 .
$$

Proof: First observe that, since $0 \cdot x=0$ for all $x \in \mathbb{R}$, it follows that $0^{2}=0$. Thus, if $a=0$ and $b=0$, then

$$
a^{2}+b^{2}=0+0=0
$$

Conversely, we prove that $a^{2}+b^{2}=0$ implies that $a=0$ and $b=0$ by showing the contrapositive:

$$
a \neq 0 \text { or } \quad b \neq 0 \Rightarrow a^{2}+b^{2} \neq 0
$$

Assume that $a \neq 0$. Then, $a^{2}>0$. Thus, adding b^{2} on both sides,

$$
a^{2}+b^{2}>0+b^{2}=b^{2} \geqslant 0
$$

since $x^{2} \geqslant 0$ for all $x \in \mathbb{R}$. We have therefore shown that

$$
a^{2}+b^{2}>0
$$

which implies that $a^{2}+b^{2} \neq 0$, by the trichotomy property.
The argument for the case $b \neq 0$ is similar and the proof is now complete.
2. Use induction to prove that $n>0$ for all $n \in \mathbb{N}$.

Proof: Let $P(n)$ denote the statement " $n>0$ ".
Observe that $1>0$ since $1=1^{2} \geqslant 0$ and $1 \neq 0$. Thus, $P(1)$ is true.
Next, assume that $P(n)$ is true; that is, $n>0$. We show that $P(n+1)$ is true.
Since $n>0$ and $1>0$, it follows from the order Axiom O_{2} that $n+1>0$, which shows that $P(n+1)$ is true.

Hence, by the principle of mathematical induction, $n>0$ for all $n \in \mathbb{N}$.
3. Let r be a rational number satisfying $r>0$. Prove that there exists a rational number, q, such that

$$
0<q<r
$$

Proof: Let $r \in \mathbb{Q}$ be positive. Then, $r=\frac{n}{m}$, where n and m are positive integers. Since, $m+1>m$, it follows that

$$
\frac{1}{m+1}<\frac{1}{m}
$$

Thus,

$$
\frac{n}{m+1}<\frac{n}{m}
$$

since $n>0$. We have therefore shown that

$$
0<\frac{n}{m+1}<r
$$

The proof follows by setting $q=\frac{n}{m+1}$.
4. Let $a, b \in \mathbb{R}$. Suppose that $a<b+\varepsilon$ for every $\varepsilon>0$. Prove that

$$
a \leqslant b .
$$

Proof: Argue by contradiction. Suppose that $a<b+\varepsilon$ for every $\varepsilon>0$ and $a>b$. Then, $a-b>0$. Set $\varepsilon=a-b$. By assumption

$$
a<b+(a-b)
$$

which implies that $0<0$. This is nonsense; therefore $a \leqslant b$.
5. Let $x \in \mathbb{R}$. Prove that $0 \leqslant x<\varepsilon$ for every $\varepsilon>0$ implies that $x=0$.

Proof: Assume that $x \geqslant 0$ and $x<\varepsilon$ for all $\varepsilon>0$. Then,

$$
x<0+\varepsilon \quad \text { for all } \varepsilon>0
$$

Thus, by the result of the previous problem $x \leqslant 0$. Combining this with $x \geqslant 0$ yields that $x=0$.

