Solutions to Assignment #4

1. Let $a, b \in \mathbb{R}$. Prove that

$$a^2 + b^2 = 0$$
 if and only if $a = 0$ and $b = 0$.

Proof: First observe that, since $0 \cdot x = 0$ for all $x \in \mathbb{R}$, it follows that $0^2 = 0$. Thus, if a = 0 and b = 0, then

$$a^2 + b^2 = 0 + 0 = 0.$$

Conversely, we prove that $a^2 + b^2 = 0$ implies that a = 0 and b = 0 by showing the contrapositive:

$$a \neq 0 \text{ or } b \neq 0 \Rightarrow a^2 + b^2 \neq 0.$$

Assume that $a \neq 0$. Then, $a^2 > 0$. Thus, adding b^2 on both sides,

$$a^2 + b^2 > 0 + b^2 = b^2 \ge 0,$$

since $x^2 \ge 0$ for all $x \in \mathbb{R}$. We have therefore shown that

$$a^2 + b^2 > 0,$$

which implies that $a^2 + b^2 \neq 0$, by the trichotomy property.

The argument for the case $b \neq 0$ is similar and the proof is now complete. \Box

2. Use induction to prove that n > 0 for all $n \in \mathbb{N}$.

Proof: Let P(n) denote the statement "n > 0".

Observe that 1 > 0 since $1 = 1^2 \ge 0$ and $1 \ne 0$. Thus, P(1) is true.

Next, assume that P(n) is true; that is, n > 0. We show that P(n+1) is true. Since n > 0 and 1 > 0, it follows from the order Axiom O_2 that n + 1 > 0, which shows that P(n+1) is true.

Hence, by the principle of mathematical induction, n > 0 for all $n \in \mathbb{N}$.

3. Let r be a rational number satisfying r > 0. Prove that there exists a rational number, q, such that

$$0 < q < r.$$

Math 101. Rumbos

Fall 2012 2

Proof: Let $r \in \mathbb{Q}$ be positive. Then, $r = \frac{n}{m}$, where n and m are positive integers. Since, m + 1 > m, it follows that

$$\frac{1}{m+1} < \frac{1}{m}.$$

Thus,

$$\frac{n}{m+1} < \frac{n}{m}.$$

since n > 0. We have therefore shown that

$$0 < \frac{n}{m+1} < r.$$

The proof follows by setting $q = \frac{n}{m+1}$.

4. Let $a, b \in \mathbb{R}$. Suppose that $a < b + \varepsilon$ for every $\varepsilon > 0$. Prove that

 $a \leqslant b$.

Proof: Argue by contradiction. Suppose that $a < b + \varepsilon$ for every $\varepsilon > 0$ and a > b. Then, a - b > 0. Set $\varepsilon = a - b$. By assumption

$$a < b + (a - b),$$

which implies that 0 < 0. This is nonsense; therefore $a \leq b$.

5. Let $x \in \mathbb{R}$. Prove that $0 \leq x < \varepsilon$ for every $\varepsilon > 0$ implies that x = 0.

Proof: Assume that $x \ge 0$ and $x < \varepsilon$ for all $\varepsilon > 0$. Then,

$$x < 0 + \varepsilon$$
 for all $\varepsilon > 0$.

Thus, by the result of the previous problem $x \leq 0$. Combining this with $x \geq 0$ yields that x = 0.