Solutions to Assignment \#5

1. Let a, b, c and d denote real numbers.

Prove that if $a<b$ and $c<d$, then $a+c<b+d$.
Proof: Assume that $a<b$ and $c<d$. Then, by the definition of order in \mathbb{R},

$$
b-a>0 \quad \text { and } \quad d-c>0 .
$$

It then follows from Axiom O_{2} that

$$
b-a+d-c>0,
$$

where we have used the associative property of addition. Thus, using associativity of addition again, commutativity of addition and the distributive property, we get that

$$
b+d-(a+c)>0
$$

which shows that

$$
a+c<b+d
$$

2. For any real number a, show that $|-a|=|a|$.

Proof: Suppose first that $a>0$. Then, $-a<0$, so that

$$
|-a|=-(-a)=a
$$

by the definition of the absolute value function. Thus,

$$
|-a|=|a|,
$$

by the definition of absolute value again.
Next, suppose that $a<0$. Then, $-a>0$, and so, by the definition of the absolute value,

$$
|-a|=-a=|a|,
$$

again by the definition of the absolute value.
Finally, for $a=0$, we also get $|-a|=|a|$ since $-0=0$ and $|0|=0$.
We have therefore proved that

$$
|-a|=|a| \quad \text { for all } a \in \mathbb{R}
$$

3. Let a and b denote real numbers with $b \neq 0$. Show that

$$
\left|\frac{a}{b}\right|=\frac{|a|}{|b|}
$$

Proof: Let $a, b \in \mathbb{R}$ with $b \neq 0$. Then, b^{-1} exists. We first prove that

$$
\left|b^{-1}\right|=\frac{1}{|b|} .
$$

To see why this is the case, observe that

$$
b^{-1} b=1
$$

so that

$$
\left|b^{-1} b\right|=1,
$$

since $|1|=1$, by the definition of absolute value, as $1>0$. Thus, by a result proved in class (see Problem 1(c) in Problem Set \#2),

$$
\left|b^{-1}\right||b|=1
$$

from which we get that $|b|$ is invertible and

$$
|b|^{-1}=\left|b^{-1}\right|
$$

which can be written as

$$
\begin{equation*}
\left|b^{-1}\right|=\frac{1}{|b|} \tag{1}
\end{equation*}
$$

Next, write

$$
\frac{a}{b}=a b^{-1}
$$

and take the absolute value of both sides to get

$$
\begin{equation*}
\left|\frac{a}{b}\right|=|a|\left|b^{-1}\right| \tag{2}
\end{equation*}
$$

where we have used again the result of Problem 1(c) in Problem Set \#2. Consequently, using (1), we obtain from (2) that

$$
\left|\frac{a}{b}\right|=\frac{|a|}{|b|}
$$

which was to be shown.
4. Prove that $|a+b+c| \leq|a|+|b|+|c|$ for all real numbers a, b and c.

Proof: Apply the triangle inequality to

$$
|a+b+c|=|(a+b)+c|
$$

to get

$$
\begin{aligned}
|a+b+c| & \leqslant|a+b|+|c| \\
& \leqslant|a|+|b|+|c|
\end{aligned}
$$

where we have used the triangle inequality a second time.
5. Use induction on n to prove that

$$
2^{n}>n \quad \text { for all } n \in \mathbb{N}
$$

Proof: Let $P(n)$ denote the statement " $2^{n}>n$ ". We prove that $P(n)$ is true for all $n \in \mathbb{N}$ by induction on n.
First note that $2^{1}=2=1+1>1$, since $1>0$. Consequently, $P(1)$ is true.
Next, we prove the implication

$$
P(n) \text { is true } \Rightarrow P(n+1) \text { is true. }
$$

Assume that $P(n)$ is true; that is, $2^{n}>n$. Consider

$$
2^{n+1}=2 \cdot 2^{n}=2^{n}+2^{n}
$$

and apply the assumption that $P(n)$ is true on the right hand side to get

$$
2^{n+1}>n+n \geqslant n+1
$$

since $n \geqslant 1$, which shows that $P(n+1)$ is true.
Hence, by induction on $n, 2^{n}>n$ for all $n \in \mathbb{N}$.

