Assignment \#6

Due on Friday, October 5, 2012
Read Handout \#2 on The Real Numbers System Axioms.
Read Section 4.6 on Ordered Fields on pp. 63-66 in Schramm's text.
Read Section 4.7 on Absolute Value and Distance on pp. 68-68 in Schramm's text.
Do the following problems

1. Let $x \in \mathbb{R}$. Prove that $0<x \leqslant 1$ implies that $x^{2} \leqslant x$.
2. Let a and b denote real numbers. Use the triangle inequality to prove that

$$
||a|-|b|| \leqslant|a-b|
$$

3. Let a and b denote positive real numbers. Start with the true statement

$$
(a-b)^{2} \geqslant 0
$$

to prove the inequality

$$
a b \leqslant \frac{a^{2}+b^{2}}{2}
$$

Prove that equality holds if and only if $a=b$.
4. Given a real number x, denote by $\max \{x, 0\}$ the larger of x and 0 . Prove that

$$
\max \{x, 0\}=\frac{x+|x|}{2}
$$

5. Let x and $\max \{x, 0\}$ be as in the previous problem. Denote by $\min \{x, 0\}$ the smaller of x and 0 . Prove that

$$
\min \{x, 0\}=-\max \{-x, 0\}
$$

and use this result to derive a formula for $\min \{x, 0\}$ analogous to that for $\max \{x, 0\}$ proved in the previous problem.

