Solutions to Assignment \#6

1. Let $x \in \mathbb{R}$. Prove that $0<x \leqslant 1$ implies that $x^{2} \leqslant x$.

Proof: Assume that $x>0$ and $x \leqslant 1$. Then,

$$
x \cdot x \leqslant x \cdot 1
$$

from which the result follows.
2. Let a and b denote real numbers. Use the triangle inequality to prove that

$$
||a|-|b|| \leqslant|a-b|
$$

Proof. Write $a=(a-b)+b$ and take absolute value on both sides of this identity to get

$$
|a|=|(a-b)+b| .
$$

Applying the triangle inequality on the right-hand side we obtain that

$$
|a| \leqslant|a-b|+|b|
$$

from which we get that

$$
\begin{equation*}
|a|-|b| \leqslant|a-b| . \tag{1}
\end{equation*}
$$

Similar calculations show that

$$
|b|-|a| \leqslant|b-a| .
$$

Thus, using the fact that $|b-a|=|-(a-b)|=|a-b|$ and multiplying the previous inequality by -1 , we obtain that

$$
\begin{equation*}
-|a-b| \leqslant|a|-|b| \tag{2}
\end{equation*}
$$

Combining the inequalities in (1) and (2) yields

$$
-|a-b| \leqslant|a|-|b| \leqslant|a-b|
$$

which is equivalent to $||a|-|b|| \leqslant|a-b|$.
3. Let a and b denote positive real numbers. Start with the true statement

$$
(a-b)^{2} \geqslant 0
$$

to prove the inequality

$$
a b \leqslant \frac{a^{2}+b^{2}}{2}
$$

Prove that equality holds if and only if $a=b$.
Solution: From the inequality

$$
0 \leqslant(a-b)^{2}
$$

we obtain

$$
0 \leqslant a^{2}-2 a b+b^{2}
$$

Adding $2 a b$ to both sides of the last inequality we then have that

$$
2 a b \leqslant a^{2}+b^{2}
$$

from which the result follows after dividing by 2 .
Equality holds if and only if

$$
(a-b)^{2}=0
$$

which is true if and only if $a-b=0$, or $a=b$.
4. Given a real number x, denote by $\max \{x, 0\}$ the larger of x and 0 . Prove that

$$
\max \{x, 0\}=\frac{x+|x|}{2}
$$

Solution: We consider two cases: (i) $x \geqslant 0$, and (ii) $x<0$.
(i) If $x \geqslant 0$, then $\max \{x, 0\}=x$. On the other hand,

$$
\frac{x+|x|}{2}=\frac{x+x}{2}=\frac{2 x}{2}=x .
$$

Thus, the equality is verified in this case.
(ii) If $x<0$, then $\max \{x, 0\}=0$, and

$$
\frac{x+|x|}{2}=\frac{x-x}{2}=0 .
$$

So, equality is verified in this case as well.
5. Let x and $\max \{x, 0\}$ be as in the previous problem. Denote by $\min \{x, 0\}$ the smaller of x and 0 . Prove that

$$
\min \{x, 0\}=-\max \{-x, 0\}
$$

and use this result to derive a formula for $\min \{x, 0\}$ analogous to that for $\max \{x, 0\}$ proved in the previous problem.
Solution: We consider two cases: (i) $x \geqslant 0$, and (ii) $x<0$.
(i) If $x \geqslant 0$, then $\min \{x, 0\}=0$ and $-x \leqslant 0$, so that $\max \{-x, 0\}=0$. Thus, equality holds in this case.
(ii) If $x<0$, then $\min \{x, 0\}=x$, and $-x>0$, so that

$$
\max \{-x, 0\}=-x
$$

Consequently, $-\max \{-x, 0\}=x$, which is $\min \{x, 0\}$ is this case.
We have therefore established that

$$
\min \{x, 0\}=-\max \{-x, 0\}
$$

Using the formula for max derived in the previous problem we then have that

$$
\begin{aligned}
\min \{x, 0\} & =-\left(\frac{-x+|-x|}{2}\right) \\
& =\frac{x-|x|}{2}
\end{aligned}
$$

since $|-x|=|x|$ for all $x \in \mathbb{R}$. Hence,

$$
\min \{x, 0\}=\frac{x-|x|}{2}
$$

