Solutions to Assignment \#7

1. Let $a, b \in \mathbb{R}$. Prove that

$$
a<b \text { if and only if } a<\frac{a+b}{2}<b
$$

Proof: Assume that $a<b$. Then, adding a to both sides of the inequality yields

$$
2 a<a+b
$$

from which we get that

$$
a<\frac{a+b}{2} .
$$

On the other hand, adding b to both sides of $a<b$, we obtain

$$
a+b<2 b
$$

which implies that

$$
\frac{a+b}{2}<b
$$

Hence, $a<b$ implies that

$$
a<\frac{a+b}{2}<b .
$$

Conversely, assume that

$$
a<\frac{a+b}{2}<b .
$$

Multiplying by the positive number 2 then yields

$$
2 a<a+b<2 b
$$

Adding $-a$ to both sides of the first inequality gives

$$
a<b .
$$

2. Prove that between any two rational numbers there is at least one rational number.

Proof: Let p and q denote rational numbers and suppose that $p<q$. Then, by the result of Problem 1,

$$
p<\frac{p+q}{2}<q
$$

where $\frac{p+q}{2}$ is a rational number since \mathbb{Q} is a field.
3. Prove that between any two rational numbers there are infinitely many rational numbers.

Proof: Let p and q denote rational numbers with $p<q$. Assume, by way of contradiction, that there are only a finite number, n, of rational numbers

$$
q_{1}, q_{2}, \ldots, q_{n}
$$

in other words, $q_{1}, q_{2}, \ldots, q_{n}$ are the only rational numbers between p and q. By trichotomy, since these rational numbers are distinct, we may assume that they are ordered as follows

$$
p<q_{1}<q_{2}<\cdots<q_{n}<q .
$$

Applying the result of Problem 2 to q_{n} and q, we obtain a rational number, r, such that $q_{n}<r<q$. Thus, there are $n+1$ rational numbers between p and q. This is a contradiction. Thus, there are infinitely many rational numbers between p and q.
4. Given two subsets, A and B, of real numbers, the union of A and B is the set $A \cup B$ defined by

$$
A \cup B=\{x \in \mathbb{R} \mid x \in A \text { or } x \in B\}
$$

Assume that A and B are non-empty and bounded above. Prove that $\sup (A \cup B)$ exists and

$$
\sup (A \cup B)=\max \{\sup (A), \sup (B)\}
$$

where $\max \{\sup (A), \sup (B)\}$ denotes the largest of $\sup (A)$ and $\sup (B)$.
Proof: Assume that A and B are non-empty and bounded above. Then, their suprema, $\sup (A)$ and $\sup (B)$, respectively, exist, by the completeness axiom. The assumption that A and B are non-empty also implies that $A \cup B$ is nonempty.

Let x be an arbitrary element in $A \cup B$. Then, either $x \in A$ or $x \in B$. If $x \in A$, the

$$
\begin{equation*}
x \leqslant \sup (A) \tag{1}
\end{equation*}
$$

On the other hand, if $x \in B$, then

$$
\begin{equation*}
x \leqslant \sup (B) \tag{2}
\end{equation*}
$$

Thus, if $x \in A \cup B$, it follows from (1) and (2) that

$$
x \leqslant \max \{\sup (A), \sup (B)\},
$$

since

$$
\sup (A) \leqslant \max \{\sup (A), \sup (B)\} \text { and } \sup (B) \leqslant \max \{\sup (A), \sup (B)\} .
$$

Thus, $\max \{\sup (A), \sup (B)\}$ is an upper bound for $A \cup B$. Thus, by the completeness axiom $\sup (A \cup B)$ exists and

$$
\begin{equation*}
\sup (A \cup B) \leqslant \max \{\sup (A), \sup (B)\} \tag{3}
\end{equation*}
$$

Next, observe that

$$
A \subseteq A \cup B
$$

and

$$
B \subseteq A \cup B
$$

from which we get that

$$
\sup (A) \leqslant \sup (A \cup B)
$$

and

$$
\sup (B) \leqslant \sup (A \cup B)
$$

Consequently,

$$
\begin{equation*}
\max \{\sup (A), \sup (B)\} \leqslant \sup (A \cup B) \tag{4}
\end{equation*}
$$

Combining the inequalities in (3) and (4) yields the result.
5. Given two subsets, A and B, of real numbers, the intersection of A and B is the set $A \cap B$ defined by

$$
A \cap B=\{x \in \mathbb{R} \mid x \in A \text { and } x \in B\}
$$

Is it true that $\sup (A \cap B)=\min \{\sup (A), \sup (B)\}$?

Here, $\min \{\sup (A), \sup (B)\}$ denotes the smallest of $\sup (A)$ and $\sup (B)$.
Solution: The problem here is that the intersection of A and B might be empty. If this is the case $\sup (A \cap B)$ will not be defined. Thus, if $A \cap B=\emptyset$, the answer to the question is no.
On the other hand, if $A \cap B \neq \emptyset$, then, since

$$
\begin{aligned}
& A \cap B \subseteq A \text { and } \\
& \sup (A \cap B \subseteq B
\end{aligned}, \leqslant \sup (A) \quad \text { and } \quad \sup (A \cap B) \leqslant \sup (B), ~ \$
$$

It then follows that

$$
\sup (A \cap B) \leqslant \min \{\sup (A), \sup (B)\}
$$

However, this inequality can be strict. For instance, let $A=\{0,1\}$ and $B=$ $\{0,2\}$. Then, $A \cap B=\{0\}$; so $\sup (A \cap B)=0, \sup (A)=1$ and $\sup (B)=2$. Thus,

$$
\min \{\sup (A), \sup (B)\}=1>0=\sup (A \cap B) .
$$

Thus, in general, the answer to the question is no.

