Solutions to Assignment \#8

1. Let $a, b \in \mathbb{R}$. Show that if $a<b+\frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leqslant b$.

Proof: Let $a, b \in \mathbb{R}$ and suppose that $a<b+\frac{1}{n}$ for all $n \in \mathbb{N}$. Assume, by way of contradiction that $a>b$. Then $a-b>0$. By the Archimedean property, there exists a natural number, m, such that

$$
0<\frac{1}{m}<a-b
$$

On the other hand, by the assumption,

$$
a<b+\frac{1}{m} .
$$

Thus,

$$
a<b+(a-b)
$$

which says that $a<a$. This is a contradiction. We then conclude that $a \leqslant b$.
2. Show that $\sup \{t \in \mathbb{R} \mid t<a\}=a$ for each $a \in \mathbb{R}$.

Proof: Let $a \in \mathbb{R}$ and put $A=\{t \in \mathbb{R} \mid t<a\}$. Then, a is an upper bound for A. To see that A is not empty, first note that, if $a>0$, then $0 \in A$. If $a=0$, the $-1<a$, so that $-1 \in A$. If $a<0$, then, adding a to both sides of the inequality, we get that

$$
2 a<a
$$

thus, $2 a \in A$ for $a<0$. Hence, we have proved that $A \neq \emptyset$. It then follows by the completeness axiom that $\sup (A)$ exists and

$$
\sup (A) \leqslant a
$$

If $\sup (A)<a$, it follows that

$$
\sup (A)<\frac{\sup (A)+a}{2}<a
$$

which shows that $\frac{\sup (A)+a}{2} \in A$ and is bigger than the supremum of A. This is absurd. Consequently, $\sup (A)=a$.
3. A subset, A, of the real numbers is said to be bounded if there exists a positive real number, M, such that

$$
|a| \leqslant M \quad \text { for all } a \in A .
$$

Prove that A is bounded if and only if A is bounded above and below.
Solution: Assume that A is bounded. Then there exists $M>0$ such that

$$
|a| \leqslant M \quad \text { for all } a \in A
$$

Thus,

$$
-M \leqslant a \leqslant M \quad \text { for all } a \in A,
$$

which shows that A is bounded above by M and below by $-M$.
Conversely, assume that A is bounded above and below. There A has an upper bound, u, and a lower bound ℓ. We may assume that $u>0$ (if not, replace u by $u+2|u|>0$, which is also and upper bound for A). Let $M=\max \{u,|\ell|\}$. Then, for every $a \in A$,

$$
a \leqslant u \leqslant M
$$

and

$$
a \geqslant \ell \geqslant-|\ell|,
$$

where $|\ell| \leqslant \max \{u,|\ell|\}$, so that

$$
-|\ell| \geqslant-M
$$

Thus,

$$
-M \leqslant a \leqslant M \quad \text { for all } a \in A,
$$

which shows that A is bounded.
4. For real numbers a and b with $a<b,[a, b]$ denotes the closed, bounded, interval from a to b; that is,

$$
[a, b]=\{x \in \mathbb{R} \mid a \leqslant x \leqslant b\} .
$$

Assume that $A \subseteq \mathbb{R}$ is nonempty and bounded. Prove that

$$
A \subseteq[\inf (A), \sup (A)]
$$

Proof: Assume that A non-empty and bounded. Then $\inf (A)$ and $\sup (A)$ exist. Thus,

$$
\inf (A) \leqslant a \leqslant \sup (A) \quad \text { for all } a \in A
$$

which shows that $a \in[\inf (A), \sup (A)]$ for all $a \in A$. In other words, A is a subset of $[\inf (A), \sup (A)]$.
5. Let A denote a nonempty and bounded subset of the real numbers. Prove that if I is a closed interval with $A \subseteq I$, then

$$
[\inf (A), \sup (A)] \subseteq I
$$

Proof: Assume that $A \subset \mathbb{R}$ is nonempty and bounded, with $A \subseteq I$, where I is a closed and bounded interval. Then, $\inf (A)$ and $\sup (A)$ exist. We show that

$$
[\inf (A), \sup (A)] \subseteq I
$$

Write $I=[a, b]$. Since $A \subseteq I$,

$$
a \leqslant x \leqslant b \quad \text { for all } x \in A
$$

Thus, b is an upper bound for A and a is a lower bound for A. Consequently,

$$
\sup (A) \leqslant b
$$

and

$$
a \leqslant \inf (A)
$$

We then have that

$$
\begin{equation*}
a \leqslant \inf (A) \leqslant \sup (A) \leqslant b \tag{1}
\end{equation*}
$$

Now, if $x \in[\inf (A), \sup (A)]$, then

$$
\inf (A) \leqslant x \leqslant \sup (A)
$$

It then follows from (1) that

$$
a \leqslant x \leqslant b
$$

which shows that $x \in[a, b]$. We have therefor shown the implication

$$
x \in[\inf (A), \sup (A)] \Rightarrow x \in[a, b],
$$

which is equivalent to

$$
[\inf (A), \sup (A)] \subseteq I
$$

