Solutions to Assignment #8

1. Let $a, b \in \mathbb{R}$. Show that if $a < b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.

Proof: Let $a, b \in \mathbb{R}$ and suppose that $a < b + \frac{1}{n}$ for all $n \in \mathbb{N}$. Assume, by way of contradiction that a > b. Then a - b > 0. By the Archimedean property, there exists a natural number, m, such that

$$0 < \frac{1}{m} < a - b$$

On the other hand, by the assumption,

$$a < b + \frac{1}{m}.$$

Thus,

$$a < b + (a - b),$$

which says that a < a. This is a contradiction. We then conclude that $a \leq b$. \Box

2. Show that $\sup\{t \in \mathbb{R} \mid t < a\} = a$ for each $a \in \mathbb{R}$.

Proof: Let $a \in \mathbb{R}$ and put $A = \{t \in \mathbb{R} \mid t < a\}$. Then, a is an upper bound for A. To see that A is not empty, first note that, if a > 0, then $0 \in A$. If a = 0, the -1 < a, so that $-1 \in A$. If a < 0, then, adding a to both sides of the inequality, we get that

thus, $2a \in A$ for a < 0. Hence, we have proved that $A \neq \emptyset$. It then follows by the completeness axiom that $\sup(A)$ exists and

 $\sup(A) \leq a.$

If $\sup(A) < a$, it follows that

$$\sup(A) < \frac{\sup(A) + a}{2} < a,$$

which shows that $\frac{\sup(A) + a}{2} \in A$ and is bigger than the supremum of A. This is absurd. Consequently, $\sup(A) = a$.

Math 101. Rumbos

3. A subset, A, of the real numbers is said to be **bounded** if there exists a positive real number, M, such that

$$|a| \leq M$$
 for all $a \in A$.

Prove that A is bounded if and only if A is bounded above and below.

Solution: Assume that A is bounded. Then there exists M > 0 such that

$$|a| \leq M$$
 for all $a \in A$.

Thus,

$$-M \leqslant a \leqslant M$$
 for all $a \in A$,

which shows that A is bounded above by M and below by -M.

Conversely, assume that A is bounded above and below. There A has an upper bound, u, and a lower bound ℓ . We may assume that u > 0 (if not, replace uby u + 2|u| > 0, which is also and upper bound for A). Let $M = \max\{u, |\ell|\}$. Then, for every $a \in A$,

$$a \leqslant u \leqslant M,$$

and

$$a \ge \ell \ge -|\ell|$$

where $|\ell| \leq \max\{u, |\ell|\}$, so that

 $-|\ell| \ge -M.$

Thus,

$$-M \leq a \leq M$$
 for all $a \in A$,

which shows that A is bounded.

4. For real numbers a and b with a < b, [a, b] denotes the closed, bounded, interval from a to b; that is,

$$[a,b] = \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}$$

Assume that $A \subseteq \mathbb{R}$ is nonempty and bounded. Prove that

$$A \subseteq [\inf(A), \sup(A)].$$

Proof: Assume that A non–empty and bounded. Then inf(A) and sup(A) exist. Thus,

$$\inf(A) \leq a \leq \sup(A) \quad \text{for all } a \in A,$$

which shows that $a \in [\inf(A), \sup(A)]$ for all $a \in A$. In other words, A is a subset of $[\inf(A), \sup(A)]$.

Math 101. Rumbos

5. Let A denote a nonempty and bounded subset of the real numbers. Prove that if I is a closed interval with $A \subseteq I$, then

$$[\inf(A), \sup(A)] \subseteq I.$$

Proof: Assume that $A \subset \mathbb{R}$ is nonempty and bounded, with $A \subseteq I$, where I is a closed and bounded interval. Then, $\inf(A)$ and $\sup(A)$ exist. We show that

$$[\inf(A), \sup(A)] \subseteq I.$$

Write I = [a, b]. Since $A \subseteq I$,

$$a \leqslant x \leqslant b$$
 for all $x \in A$.

Thus, b is an upper bound for A and a is a lower bound for A. Consequently,

```
\sup(A) \leqslant b
```

and

 $a \leq \inf(A).$

We then have that

$$a \leq \inf(A) \leq \sup(A) \leq b.$$
 (1)

Now, if $x \in [\inf(A), \sup(A)]$, then

$$\inf(A) \leq x \leq \sup(A).$$

It then follows from (1) that

 $a \leqslant x \leqslant b,$

which shows that $x \in [a, b]$. We have therefor shown the implication

$$x \in [\inf(A), \sup(A)] \Rightarrow x \in [a, b],$$

which is equivalent to

$$[\inf(A), \sup(A)] \subseteq I.$$