Solutions to Assignment #9

1. Let x denote a positive real number. Prove that 0 < z < 1 implies that zx < x.

Proof. Assume that 0 < z < 1 and x > 0. Then, 1 - z > 0. Thus, by the Order Axiom (O_3) ,

$$x(1-z) > 0,$$

from which we get that x - xz > 0, by the distributive property. Hence,

zx < x.

2. Let A and B be a non-empty subsets of \mathbb{R} which are bounded from above. Prove that if $\sup A < \sup B$, then there exists $b \in B$ such that b is an upper bound for A.

Proof: Assume that $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ are nonempty and bounded above. Then, by the completeness axiom, $\sup(A)$ and $\sup(B)$ exist.

If $\sup(A) < \sup(B)$, then there exists $b \in B$ such that

 $\sup(A) < b,$

otherwise $\sup(A)$ would be an upper bound for B which is smaller that $\sup(B)$, which is impossible. Thus,

$$x \leq \sup(A) < b \quad \text{for all } x \in A,$$

which shows that b is an upper bound for A.

3. Let A be a non–empty and bounded subset of \mathbb{R} . Prove that

$$\inf(A) \leq \sup(A).$$

Proof: Assume that $A \neq \emptyset$ is bounded. Then A is bounded above and below. Therefore $\inf(A)$ and $\sup(A)$ exist and

$$\inf(A) \leq x \leq \sup(A) \quad \text{for all } x \in A.$$

The result follows from this inequality.

4. Let $a \in \mathbb{R}$ and define the sets

$$A = \{ x \in \mathbb{R} \mid x < a \}$$

and

$$B = \{ q \in \mathbb{Q} \mid q < a \}.$$

Prove that the suprema of A and B exist and

$$\sup(A) = \sup(B) = a.$$

Solution: Observe that both A and B are bounded above by a. Note also that B is nonempty. In fact, by the density of the set of rational numbers in the real numbers, there exists a rational number q such that

$$a - 1 < q < a$$

so that $q \in B$. Observe also that B is a subset of A. Thus, A is also nonempty. Consequently, by the Completeness Axiom, $\sup(A)$ and $\sup(B)$ exist. Furthermore,

$$\sup(B) \leqslant \sup(A) \leqslant a. \tag{1}$$

Suppose, by way of contradiction, that $\sup(B) < \sup(A)$. Then, by the density of \mathbb{Q} in \mathbb{R} , there exists a rational number q such that

$$\sup(B) < q < \sup(A). \tag{2}$$

It follows from (2) and (1) that q < a so that $q \in B$. However, this is in direct contradiction with the left-most inequality in (2). This contradiction shows that

$$\sup(B) = \sup(A). \tag{3}$$

We next show that $\sup(B) = a$. Arguing by contradiction again, assume, in view of (1), that $\sup(B) < a$. Invoking the density of \mathbb{Q} in \mathbb{R} again, we get that there exists $q \in \mathbb{Q}$ such that

$$\sup(B) < q < a. \tag{4}$$

It follows from the right-most inequality in (4) that $q \in B$, which is in contradiction with the left-most inequality in (4). This contradiction establishes that

$$\sup(B) = a. \tag{5}$$

The results in (3) and (5) together imply what we were asked to prove. \Box

Math 101. Rumbos

5. Use the fact that between any two distinct real numbers there is a rational number to prove the statement:

Between any two distinct real numbers there is at least one irrational number.

Solution: Let x and y denote distinct real numbers and assume, without loss of generality, that

$$x < y. \tag{6}$$

We have seen in class that $\sqrt{2}$ is an irrational number. Adding $\sqrt{2}$ to both sides on the inequality in (6) we obtain

$$x + \sqrt{2} < y + \sqrt{2}.$$

Next, use the fact that between any two distinct real numbers there is a rational number to obtain $q \in \mathbb{Q}$ such that

$$x + \sqrt{2} < q < y + \sqrt{2}.\tag{7}$$

Adding $-\sqrt{2}$ to every term in the inequality in (7) we obtain that

$$x < q - \sqrt{2} < y,$$

and observe that $q - \sqrt{2}$ is irrational.