Solutions to Assignment \#9

1. Let x denote a positive real number. Prove that $0<z<1$ implies that $z x<x$.

Proof. Assume that $0<z<1$ and $x>0$. Then, $1-z>0$. Thus, by the Order Axiom (O_{3}),

$$
x(1-z)>0
$$

from which we get that $x-x z>0$, by the distributive property. Hence,

$$
z x<x .
$$

2. Let A and B be a non-empty subsets of \mathbb{R} which are bounded from above. Prove that if $\sup A<\sup B$, then there exists $b \in B$ such that b is an upper bound for A.

Proof: Assume that $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ are nonempty and bounded above. Then, by the completeness axiom, $\sup (A)$ and $\sup (B)$ exist.
If $\sup (A)<\sup (B)$, then there exists $b \in B$ such that

$$
\sup (A)<b
$$

otherwise $\sup (A)$ would be an upper bound for B which is smaller that $\sup (B)$, which is impossible. Thus,

$$
x \leqslant \sup (A)<b \quad \text { for all } x \in A
$$

which shows that b is an upper bound for A.
3. Let A be a non-empty and bounded subset of \mathbb{R}. Prove that

$$
\inf (A) \leqslant \sup (A)
$$

Proof: Assume that $A \neq \emptyset$ is bounded. Then A is bounded above and below. Therefore $\inf (A)$ and $\sup (A)$ exist and

$$
\inf (A) \leqslant x \leqslant \sup (A) \quad \text { for all } x \in A
$$

The result follows from this inequality.
4. Let $a \in \mathbb{R}$ and define the sets

$$
A=\{x \in \mathbb{R} \mid x<a\}
$$

and

$$
B=\{q \in \mathbb{Q} \mid q<a\} .
$$

Prove that the suprema of A and B exist and

$$
\sup (A)=\sup (B)=a
$$

Solution: Observe that both A and B are bounded above by a. Note also that B is nonempty. In fact, by the density of the set of rational numbers in the real numbers, there exists a rational number q such that

$$
a-1<q<a
$$

so that $q \in B$. Observe also that B is a subset of A. Thus, A is also nonempty. Consequently, by the Completeness Axiom, $\sup (A)$ and $\sup (B)$ exist. Furthermore,

$$
\begin{equation*}
\sup (B) \leqslant \sup (A) \leqslant a \tag{1}
\end{equation*}
$$

Suppose, by way of contradiction, that $\sup (B)<\sup (A)$. Then, by the density of \mathbb{Q} in \mathbb{R}, there exists a rational number q such that

$$
\begin{equation*}
\sup (B)<q<\sup (A) \tag{2}
\end{equation*}
$$

It follows from (2) and (1) that $q<a$ so that $q \in B$. However, this is in direct contradiction with the left-most inequality in (2). This contradiction shows that

$$
\begin{equation*}
\sup (B)=\sup (A) \tag{3}
\end{equation*}
$$

We next show that $\sup (B)=a$. Arguing by contradiction again, assume, in view of (1), that $\sup (B)<a$. Invoking the density of \mathbb{Q} in \mathbb{R} again, we get that there exists $q \in \mathbb{Q}$ such that

$$
\begin{equation*}
\sup (B)<q<a \tag{4}
\end{equation*}
$$

It follows from the right-most inequality in (4) that $q \in B$, which is in contradiction with the left-most inequality in (4). This contradiction establishes that

$$
\begin{equation*}
\sup (B)=a \tag{5}
\end{equation*}
$$

The results in (3) and (5) together imply what we were asked to prove.
5. Use the fact that between any two distinct real numbers there is a rational number to prove the statement:
Between any two distinct real numbers there is at least one irrational number.
Solution: Let x and y denote distinct real numbers and assume, without loss of generality, that

$$
\begin{equation*}
x<y . \tag{6}
\end{equation*}
$$

We have seen in class that $\sqrt{2}$ is an irrational number. Adding $\sqrt{2}$ to both sides on the inequality in (6) we obtain

$$
x+\sqrt{2}<y+\sqrt{2} .
$$

Next, use the fact that between any two distinct real numbers there is a rational number to obtain $q \in \mathbb{Q}$ such that

$$
\begin{equation*}
x+\sqrt{2}<q<y+\sqrt{2} \tag{7}
\end{equation*}
$$

Adding $-\sqrt{2}$ to every term in the inequality in (7) we obtain that

$$
x<q-\sqrt{2}<y
$$

and observe that $q-\sqrt{2}$ is irrational.

