Solutions to Exam 1 (Part I)

1. Provide concise answers to the following questions:
(a) Give the negation of the following statement:
"For every $\varepsilon>0$, there exists $n_{o} \in \mathbb{N}$ such that

$$
n \geqslant n_{o} \Rightarrow\left|x_{n}-x\right|<\varepsilon .^{\prime \prime}
$$

Answer: There exists $\varepsilon>0$ such that, for all $n_{o} \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that

$$
n \geqslant n_{o} \text { and }\left|x_{n}-x\right| \geqslant \varepsilon
$$

(b) Let A denote a subset of the real numbers. Give the negation of the statement:
" A is bounded above."
Answer: For every real number, M, there exists an element, a, of A such that $a>M$.
(c) Let a and b denote real numbers. Give the contrapositive of the statement:
"If $a b=0$, then either $a=0$ or $b=0$."
Answer: If $a \neq 0$ and $b \neq 0$, then $a b \neq 0$.
(d) Let B denote a subset of the real numbers. Give the converse of the statement:
"If B is non-empty and bounded below, then B has a greatest lower bound."
Answer: If B has a greatest lower bound, then B is non-empty and bounded below.
2. Let a denote a real number.
(a) Use the field and order axioms of the real numbers to prove the statement: If $a>1$, then $a^{2}>1$.

Proof: Assume that $a>1$; then $a-1>0$. Next, since $1>0$, it follows that $a>0$; so that $a+1>0$ by O_{2}. Consequently, by O_{3},

$$
(a+1)(a-1)>0,
$$

from which we get that $a^{2}-1>0$, or $a^{2}>1$, which was to be shown.
(b) Use Mathematical Induction to prove the statement:

If $a>1$, then $a^{n}>1$ for all $n \in \mathbb{N}$.
Proof: Assume that $a>1$. We show that $a^{n}>1$ for all $n \in \mathbb{N}$ by induction on n.
The case $n=1$ is true by the assumption that $a>1$.
Next, we establish the implication: $a^{n}>1 \Rightarrow a^{n+1}>1$.
Assume that

$$
\begin{equation*}
a^{n}>1 \tag{1}
\end{equation*}
$$

Since we are assuming that $a>1$, it is also the case that $a>0$, since $1>0$. Multiply the inequality in (1) by a to obtain

$$
a \cdot a^{n}>a \cdot 1,
$$

from which we get that $a^{n+1}>a$, which implies that $a^{n+1}>1$ since $a>1$. The proof is now complete.

