Solutions to Review Problems for Exam \#1

1. Let B denote a non-empty subset of the real numbers which is bounded below. Define

$$
A=\{x \in \mathbb{R} \mid x \text { is a lower bound for } B\} .
$$

Prove that A is non-empty and bounded above, and that $\sup A=\inf B$.
Solution: Since B is bounded below, there exists $\ell \in \mathbb{R}$ such that ℓ is a lower bound for B. Hence, $\ell \in A$ and, therefore, A is not empty.
Next, use the assumption that B is non-empty to conclude that there exists $b \in B$. Then, for any lower bound, ℓ, of B,

$$
\ell \leqslant b
$$

Hence, b is an upper bound for A.
Thus, we have shown that A is non-empty and bounded above. Therefore, by the Completeness Axiom, $\sup (A)$ exists.

We show next that $\sup (A)$ is the infimum of B.
First we show that $\sup (A)$ is a lower bound for B. Let $\ell \in A$, then

$$
\ell \leqslant b \quad \text { for every } \quad b \in B
$$

Thus, every $b \in B$ is an upper bound for A. Consequently,

$$
\sup (A) \leqslant b \quad \text { for every } b \in B
$$

Hence, $\sup (A)$ is a lower bound for B.
Next, let c be a lower bound for B. Then $c \in A$ and therefore

$$
c \leqslant \sup (A) ;
$$

that is, $\sup (A)$ is greater or equal to any lower bound for B. In other words,

$$
\sup (A)=\inf (B)
$$

which was to be shown.
2. Prove that, for any real number, x,

$$
\left|x^{2}\right|=|x|^{2}=x^{2}
$$

Proof: Compute

$$
\begin{aligned}
\left|x^{2}\right| & =|x x| \\
& =|x||x| \\
& =|x|^{2} .
\end{aligned}
$$

On the other hand, by the definition of the absolute value function,

$$
\left|x^{2}\right|=x^{2}
$$

since $x^{2} \geqslant 0$. It then follows that $|x|^{2}=x^{2}$, and the proof is now complete.
3. Let $a, b, c \in \mathbb{R}$ with $c>0$. Show that $|a-b|<c$ if and only if $b-c<a<b+c$.

Solution: $|a-b|<c$ if and only if $-c<a-b<c$, which is true if and only if

$$
b-c<a<b+c,
$$

where we have added b to each part of the inequality.
4. Let $a, b \in \mathbb{R}$. Show that if $a<x$ for all $x>b$, then $a \leqslant b$.

Proof: Assume, by way of contradiction, that $a<x$ for all $x>b$ and $a>b$. It then follows that $a<a$, which is absurd. Hence, $a<x$ for all $x>b$ implies that $a \leqslant b$.
5. Show that the set $A=\{1 / n \mid n \in \mathbb{N}\}$ is bounded above and below, and give its supremum and infimum.
Solution: Observe that $\frac{1}{n} \leqslant 1$ for all $n \in \mathbb{N}$. It then follows that 1 is an upper bound for A. Since, $A \neq \emptyset, \sup (A)$ exists and

$$
\sup (A) \leqslant 1
$$

To see that $\sup (A)=1$, observe that $1 \in A$ and therefore $1 \leqslant \sup (A)$.
Next, observe that $n>0$ for all $n \in \mathbb{N}$. It then follows that $n^{-1}>0$ for all n in \mathbb{N}. Thus, 0 is a lower bound for A. Consequently, the infimum of A exists and

$$
0 \leqslant \inf (A)
$$

To see that $\inf (A)=0$, assume to the contrary that $\inf (A)>0$; then $\frac{1}{\inf (A)}>$
0 . Since \mathbb{N} is unbounded, there exists a natural number, n, such that

$$
n>\frac{1}{\inf (A)}
$$

It then follows that

$$
\frac{1}{n}<\inf (A)
$$

which is impossible since $\frac{1}{n} \in A$. Thus, $\inf (A)=0$.
6. Let $A=\left\{\left.n+\frac{(-1)^{n}}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Compute $\sup A$ and $\inf A$, if they exist.

Solution: First note that, since

$$
\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n} \leqslant 1,
$$

for all $n \in \mathbb{N}$, it follows that

$$
\begin{equation*}
n+\frac{(-1)^{n}}{n} \geqslant n-\left|\frac{(-1)^{n}}{n}\right| \geqslant n-1 \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Consequently, the set A is not bounded since \mathbb{N} is unbounded. Therefore, $\sup (A)$ does not exist.
On the other hand, it follows from the inequality in (1) that

$$
n+\frac{(-1)^{n}}{n} \geqslant 0
$$

for all $n \in \mathbb{N}$. Thus, 0 is a lower bound for A. Therefore, since A is not empty, $\inf (A)$ exists and

$$
\inf (A) \geqslant 0
$$

To see that $\inf (A)=0$, note that $0 \in A$.
7. Let $A=\{1 / n \mid n \in \mathbb{N}$ and n is prime $\}$. Compute $\sup A$ and $\inf A$, if they exist. Solution: Since $n=2$ is the smallest prime, it follows that $n \geqslant 2$ for all $n \in \mathbb{N}$ which are prime. It then follows that

$$
a \leqslant \frac{1}{2} \quad \text { for all } a \in A
$$

Thus, $\frac{1}{2}$ is an upper bound for A. Hence, since A is non-empty, $\sup (A)$ exists and

$$
\sup (A) \leqslant \frac{1}{2}
$$

In fact, $\sup (A)=\frac{1}{2}$ since $\frac{1}{2} \in A$.
Next, note that, by definition, prime numbers are positive. Consequently, $a>0$ for all $a \in A$ and therefore 0 is a lower bound for A. Thus, $\inf (A)$ exists and

$$
\inf (A) \geqslant 0
$$

To see that $\inf (A)=0$, argue by contradiction. If $\inf (A)>0$, then $\frac{1}{\inf (A)}>0$, and so, since the set of primes is unbounded, there exists a prime number, p, with

$$
\frac{1}{\inf (A)}<p
$$

from which we get that

$$
\inf (A)>\frac{1}{p}
$$

which is impossible since $\frac{1}{p} \in A$. Therefore, $\inf (A)=0$.
8. Let A denote a subset of \mathbb{R}. Give the negation of the statement:" A is bounded above."
Solution: First, translate the statement " A is bounded above" into

$$
\exists u \in \mathbb{R} \text { such that }(\forall a \in A) a \leqslant u
$$

Thus, the negation of the statement reads

$$
(\forall u \in \mathbb{R})(\exists a \in A) \text { such that } a>u
$$

In other words, "for every real number, u, it is possible to find an element of A which is bigger than u."
9. Let $A \subseteq \mathbb{R}$ be non-empty and bounded from above. Put $s=\sup A$. Prove that for every $n \in \mathbb{N}$ there exists $x_{n} \in A$ such that

$$
s-\frac{1}{n}<x_{n} \leqslant s
$$

Proof: Note that for all $n \in \mathbb{N}, \frac{1}{n}>0$. Thus,

$$
s-\frac{1}{n}<s
$$

Thus, for each $n \in \mathbb{N}$, it is possible to find an element of A, call it x_{n}, such that

$$
s-\frac{1}{n}<x_{n}
$$

otherwise,

$$
x \leqslant s-\frac{1}{n} \quad \text { for all } x \in A
$$

which would say that $s-\frac{1}{n}$ is an upper bound of A, smaller than $\sup (A)$. This is impossible. Hence, for every $n \in \mathbb{N}$ there exists $x_{n} \in A$ such that

$$
s-\frac{1}{n}<x_{n} \leqslant s
$$

10. What can you say about a non-empty subset, A, of real numbers for which $\sup A=\inf A$.

Solution: Assume that $A \subseteq \mathbb{R}$ is non-empty with $\sup (A)=\inf (A)$.
Let a denote any element in A. Then,

$$
\sup (A)=\inf (A) \leqslant a \leqslant \sup (A)
$$

which shows that $a=\sup (A)$. Thus,

$$
A=\{\sup (A)\} ;
$$

in other words, A consists of a single element, $\sup (A)$.

