Solutions to Review Problems for Exam #1

1. Let B denote a non–empty subset of the real numbers which is bounded below. Define

 $A = \{ x \in \mathbb{R} \mid x \text{ is a lower bound for } B \}.$

Prove that A is non–empty and bounded above, and that $\sup A = \inf B$.

Solution: Since B is bounded below, there exists $\ell \in \mathbb{R}$ such that ℓ is a lower bound for B. Hence, $\ell \in A$ and, therefore, A is not empty.

Next, use the assumption that B is non-empty to conclude that there exists $b \in B$. Then, for any lower bound, ℓ , of B,

 $\ell \leqslant b.$

Hence, b is an upper bound for A.

Thus, we have shown that A is non–empty and bounded above. Therefore, by the Completeness Axiom, $\sup(A)$ exists.

We show next that $\sup(A)$ is the infimum of B.

First we show that $\sup(A)$ is a lower bound for B. Let $\ell \in A$, then

 $\ell \leq b$ for every $b \in B$.

Thus, every $b \in B$ is an upper bound for A. Consequently,

$$\sup(A) \leq b$$
 for every $b \in B$.

Hence, $\sup(A)$ is a lower bound for B.

Next, let c be a lower bound for B. Then $c \in A$ and therefore

$$c \leq \sup(A);$$

that is, $\sup(A)$ is greater or equal to any lower bound for B. In other words,

$$\sup(A) = \inf(B),$$

which was to be shown.

2. Prove that, for any real number, x,

$$|x^2| = |x|^2 = x^2.$$

Proof: Compute

$$|x^2| = |xx|$$
$$= |x||x|$$
$$= |x|^2.$$

On the other hand, by the definition of the absolute value function,

$$|x^2| = x^2,$$

since $x^2 \ge 0$. It then follows that $|x|^2 = x^2$, and the proof is now complete. \Box

3. Let $a, b, c \in \mathbb{R}$ with c > 0. Show that |a - b| < c if and only if b - c < a < b + c. **Solution**: |a - b| < c if and only if -c < a - b < c, which is true if and only if

$$b - c < a < b + c,$$

where we have added b to each part of the inequality.

4. Let $a, b \in \mathbb{R}$. Show that if a < x for all x > b, then $a \leq b$.

Proof: Assume, by way of contradiction, that a < x for all x > b and a > b. It then follows that a < a, which is absurd. Hence, a < x for all x > b implies that $a \leq b$.

5. Show that the set $A = \{1/n \mid n \in \mathbb{N}\}$ is bounded above and below, and give its supremum and infimum.

Solution: Observe that $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$. It then follows that 1 is an upper bound for A. Since, $A \neq \emptyset$, $\sup(A)$ exists and

$$\sup(A) \leq 1.$$

To see that $\sup(A) = 1$, observe that $1 \in A$ and therefore $1 \leq \sup(A)$.

Next, observe that n > 0 for all $n \in \mathbb{N}$. It then follows that $n^{-1} > 0$ for all n in \mathbb{N} . Thus, 0 is a lower bound for A. Consequently, the infimum of A exists and

 $0 \leq \inf(A).$

Math 101. Rumbos

To see that $\inf(A) = 0$, assume to the contrary that $\inf(A) > 0$; then $\frac{1}{\inf(A)} > 0$. 0. Since N is unbounded, there exists a natural number, n, such that

$$n > \frac{1}{\inf(A)}.$$

It then follows that

$$\frac{1}{n} < \inf(A),$$
possible since $\frac{1}{n} \in A$. Thus, $\inf(A) =$

which is impossible since $\frac{1}{n} \in A$. Thus, $\inf(A) = 0$.

6. Let $A = \{n + \frac{(-1)^n}{n} \mid n \in \mathbb{N}\}$. Compute $\sup A$ and $\inf A$, if they exist. **Solution**: First note that, since

$$\left|\frac{(-1)^n}{n}\right| = \frac{1}{n} \leqslant 1,$$

for all $n \in \mathbb{N}$, it follows that

$$n + \frac{(-1)^n}{n} \ge n - \left|\frac{(-1)^n}{n}\right| \ge n - 1 \tag{1}$$

for all $n \in \mathbb{N}$. Consequently, the set A is not bounded since \mathbb{N} is unbounded. Therefore, $\sup(A)$ does not exist.

On the other hand, it follows from the inequality in (1) that

$$n + \frac{(-1)^n}{n} \ge 0$$

for all $n \in \mathbb{N}$. Thus, 0 is a lower bound for A. Therefore, since A is not empty, $\inf(A)$ exists and

 $\inf(A) \ge 0.$

To see that $\inf(A) = 0$, note that $0 \in A$.

7. Let $A = \{1/n \mid n \in \mathbb{N} \text{ and } n \text{ is prime}\}$. Compute $\sup A$ and $\inf A$, if they exist. **Solution**: Since n = 2 is the smallest prime, it follows that $n \ge 2$ for all $n \in \mathbb{N}$ which are prime. It then follows that

$$a \leqslant \frac{1}{2}$$
 for all $a \in A$.

Thus, $\frac{1}{2}$ is an upper bound for A. Hence, since A is non-empty, $\sup(A)$ exists and

$$\sup(A) \leqslant \frac{1}{2}.$$

In fact, $\sup(A) = \frac{1}{2}$ since $\frac{1}{2} \in A$.

Next, note that, by definition, prime numbers are positive. Consequently, a > 0 for all $a \in A$ and therefore 0 is a lower bound for A. Thus, inf(A) exists and

$$\inf(A) \ge 0.$$

To see that $\inf(A) = 0$, argue by contradiction. If $\inf(A) > 0$, then $\frac{1}{\inf(A)} > 0$, and so, since the set of primes is unbounded, there exists a prime number, p, with

$$\frac{1}{\inf(A)} < p,$$

from which we get that

$$\inf(A) > \frac{1}{p},$$

which is impossible since $\frac{1}{p} \in A$. Therefore, $\inf(A) = 0$.

8. Let A denote a subset of \mathbb{R} . Give the negation of the statement: "A is bounded above."

Solution: First, translate the statement "A is bounded above" into

 $\exists u \in \mathbb{R} \text{ such that } (\forall a \in A) \ a \leq u.$

Thus, the negation of the statement reads

 $(\forall u \in \mathbb{R}) \ (\exists a \in A) \text{ such that } a > u.$

In other words, "for every real number, u, it is possible to find an element of A which is bigger than u."

9. Let $A \subseteq \mathbb{R}$ be non-empty and bounded from above. Put $s = \sup A$. Prove that for every $n \in \mathbb{N}$ there exists $x_n \in A$ such that

$$s - \frac{1}{n} < x_n \leqslant s.$$

Math 101. Rumbos

Proof: Note that for all $n \in \mathbb{N}$, $\frac{1}{n} > 0$. Thus,

$$s - \frac{1}{n} < s.$$

Thus, for each $n \in \mathbb{N}$, it is possible to find an element of A, call it x_n , such that

$$s - \frac{1}{n} < x_n;$$

otherwise,

$$x \leqslant s - \frac{1}{n}$$
 for all $x \in A$,

which would say that $s - \frac{1}{n}$ is an upper bound of A, smaller than $\sup(A)$. This is impossible. Hence, for every $n \in \mathbb{N}$ there exists $x_n \in A$ such that

$$s - \frac{1}{n} < x_n \leqslant s.$$

10. What can you say about a non–empty subset, A, of real numbers for which $\sup A = \inf A$.

Solution: Assume that $A \subseteq \mathbb{R}$ is non-empty with $\sup(A) = \inf(A)$. Let a denote any element in A. Then,

$$\sup(A) = \inf(A) \leqslant a \leqslant \sup(A),$$

which shows that $a = \sup(A)$. Thus,

$$A = \{\sup(A)\};\$$

in other words, A consists of a single element, $\sup(A)$.