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Solutions to Review Problems for Exam #1

1. Let B denote a non–empty subset of the real numbers which is bounded below.
Define

A = {x ∈ ℝ ∣ x is a lower bound for B}.

Prove that A is non–empty and bounded above, and that supA = inf B.

Solution: Since B is bounded below, there exists ℓ ∈ ℝ such that ℓ is a lower
bound for B. Hence, ℓ ∈ A and, therefore, A is not empty.

Next, use the assumption that B is non–empty to conclude that there exists
b ∈ B. Then, for any lower bound, ℓ, of B,

ℓ ⩽ b.

Hence, b is an upper bound for A.

Thus, we have shown that A is non–empty and bounded above. Therefore, by
the Completeness Axiom, sup(A) exists.

We show next that sup(A) is the infimum of B.

First we show that sup(A) is a lower bound for B. Let ℓ ∈ A, then

ℓ ⩽ b for every b ∈ B.

Thus, every b ∈ B is an upper bound for A. Consequently,

sup(A) ⩽ b for every b ∈ B.

Hence, sup(A) is a lower bound for B.

Next, let c be a lower bound for B. Then c ∈ A and therefore

c ⩽ sup(A);

that is, sup(A) is greater or equal to any lower bound for B. In other words,

sup(A) = inf(B),

which was to be shown. □

2. Prove that, for any real number, x,

∣x2∣ = ∣x∣2 = x2.
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Proof: Compute
∣x2∣ = ∣xx∣

= ∣x∣∣x∣

= ∣x∣2.
On the other hand, by the definition of the absolute value function,

∣x2∣ = x2,

since x2 ⩾ 0. It then follows that ∣x∣2 = x2, and the proof is now complete.

3. Let a, b, c ∈ ℝ with c > 0. Show that ∣a− b∣ < c if and only if b− c < a < b+ c.

Solution: ∣a− b∣ < c if and only if −c < a− b < c, which is true if and only if

b− c < a < b + c,

where we have added b to each part of the inequality. □

4. Let a, b ∈ ℝ. Show that if a < x for all x > b, then a ⩽ b.

Proof: Assume, by way of contradiction, that a < x for all x > b and a > b. It
then follows that a < a, which is absurd. Hence, a < x for all x > b implies
that a ⩽ b.

5. Show that the set A = {1/n ∣ n ∈ ℕ} is bounded above and below, and give its
supremum and infimum.

Solution: Observe that
1

n
⩽ 1 for all n ∈ ℕ. It then follows that 1 is an upper

bound for A. Since, A ∕= ∅, sup(A) exists and

sup(A) ⩽ 1.

To see that sup(A) = 1, observe that 1 ∈ A and therefore 1 ⩽ sup(A).

Next, observe that n > 0 for all n ∈ ℕ. It then follows that n−1 > 0 for all n in
ℕ. Thus, 0 is a lower bound for A. Consequently, the infimum of A exists and

0 ⩽ inf(A).
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To see that inf(A) = 0, assume to the contrary that inf(A) > 0; then
1

inf(A)
>

0. Since ℕ is unbounded, there exists a natural number, n, such that

n >
1

inf(A)
.

It then follows that
1

n
< inf(A),

which is impossible since
1

n
∈ A. Thus, inf(A) = 0. □

6. Let A = {n + (−1)n

n
∣ n ∈ ℕ}. Compute supA and inf A, if they exist.

Solution: First note that, since∣∣∣∣(−1)n

n

∣∣∣∣ =
1

n
⩽ 1,

for all n ∈ ℕ, it follows that

n +
(−1)n

n
⩾ n−

∣∣∣∣(−1)n

n

∣∣∣∣ ⩾ n− 1 (1)

for all n ∈ ℕ. Consequently, the set A is not bounded since ℕ is unbounded.
Therefore, sup(A) does not exist.

On the other hand, it follows from the inequality in (1) that

n +
(−1)n

n
⩾ 0

for all n ∈ ℕ. Thus, 0 is a lower bound for A. Therefore, since A is not empty,
inf(A) exists and

inf(A) ⩾ 0.

To see that inf(A) = 0, note that 0 ∈ A. □

7. Let A = {1/n ∣ n ∈ ℕ and n is prime}. Compute supA and inf A, if they exist.

Solution: Since n = 2 is the smallest prime, it follows that n ⩾ 2 for all n ∈ ℕ
which are prime. It then follows that

a ⩽
1

2
for all a ∈ A.
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Thus,
1

2
is an upper bound for A. Hence, since A is non–empty, sup(A) exists

and

sup(A) ⩽
1

2
.

In fact, sup(A) =
1

2
since

1

2
∈ A.

Next, note that, by definition, prime numbers are positive. Consequently, a > 0
for all a ∈ A and therefore 0 is a lower bound for A. Thus, inf(A) exists and

inf(A) ⩾ 0.

To see that inf(A) = 0, argue by contradiction. If inf(A) > 0, then
1

inf(A)
> 0,

and so, since the set of primes is unbounded, there exists a prime number, p,
with

1

inf(A)
< p,

from which we get that

inf(A) >
1

p
,

which is impossible since
1

p
∈ A. Therefore, inf(A) = 0. □

8. Let A denote a subset of ℝ. Give the negation of the statement: “A is bounded
above.”

Solution: First, translate the statement “A is bounded above” into

∃u ∈ ℝ such that (∀a ∈ A) a ⩽ u.

Thus, the negation of the statement reads

(∀u ∈ ℝ) (∃a ∈ A) such that a > u.

In other words, “for every real number, u, it is possible to find an element of A
which is bigger than u.” □

9. Let A ⊆ ℝ be non–empty and bounded from above. Put s = supA. Prove that
for every n ∈ ℕ there exists xn ∈ A such that

s− 1

n
< xn ⩽ s.
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Proof: Note that for all n ∈ ℕ,
1

n
> 0. Thus,

s− 1

n
< s.

Thus, for each n ∈ ℕ, it is possible to find an element of A, call it xn, such that

s− 1

n
< xn;

otherwise,

x ⩽ s− 1

n
for all x ∈ A,

which would say that s− 1

n
is an upper bound of A, smaller than sup(A). This

is impossible. Hence, for every n ∈ ℕ there exists xn ∈ A such that

s− 1

n
< xn ⩽ s.

10. What can you say about a non–empty subset, A, of real numbers for which
supA = inf A.

Solution: Assume that A ⊆ ℝ is non–empty with sup(A) = inf(A).

Let a denote any element in A. Then,

sup(A) = inf(A) ⩽ a ⩽ sup(A),

which shows that a = sup(A). Thus,

A = {sup(A)};

in other words, A consists of a single element, sup(A). □


