Solutions to Review Problems for Exam \#2

1. Suppose that the sequence $\left(x_{n}\right)$ converges to $a \neq 0$, where $x_{n} \neq 0$ for all $n \in \mathbb{N}$. Prove that the sequence $\left(\frac{1}{x_{n}}\right)$ converges to $\frac{1}{a}$.

Proof: Assume $\lim _{n \rightarrow \infty} x_{n}=a$, where $a \neq 0$. Then, there exists $N_{1} \in \mathbb{N}$ such that

$$
n \geqslant N_{1} \Rightarrow\left|x_{n}-a\right|<\frac{|a|}{2} .
$$

It then follows by the triangle inequality that

$$
n \geqslant N_{1} \Rightarrow\left|x_{n}\right|>\frac{|a|}{2}
$$

Thus, for $n \geqslant N_{1}$,

$$
\left|\frac{1}{x_{n}}-\frac{1}{a}\right|=\frac{\left|x_{n}-a\right|}{|a|\left|x_{n}\right|}<\frac{2}{|a|^{2}}\left|x_{n}-a\right| .
$$

It then follows by the Squeeze Theorem for sequences that

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{x_{n}}-\frac{1}{a}\right|=0
$$

since $\lim _{n \rightarrow \infty}\left|x_{n}-a\right|=0$. Consequently, $\left(\frac{1}{x_{n}}\right)$ converges to $\frac{1}{a}$.
2. Let $\left(x_{n}\right)$ denote a sequence that converges to x. Prove that for any $m \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} x_{n}^{m}=x^{m}
$$

Proof: We use induction on $m \in \mathbb{N}$. The case $m=1$ is true by the assumption that $\left(x_{n}\right)$ converges to x.
Next, assume that $\lim _{n \rightarrow \infty} x_{n}^{m}=x^{m}$, and write

$$
x_{n}^{m+1}=x_{n} \cdot x_{n}^{m} .
$$

Thus, x_{n}^{m+1} is the product of two convergent sequences by the inductive hypothesis. We then have that

$$
\lim _{n \rightarrow \infty} x_{n}^{m+1}=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} x_{n}^{m}=x \cdot x^{m}=x^{m+1}
$$

This completes the induction argument.
3. Let $\delta>0$ and define $y_{n}=\frac{1}{(1+\delta)^{n}}$ for all $n \in \mathbb{N}$.
(a) Use the estimate $(1+\delta)^{n}>n \delta$, for all $n \in \mathbb{N}$, to prove that the sequence $\left(y_{n}\right)$ converges to 0 .
Solution: From $(1+\delta)^{n}>n \delta$, for all $n \in \mathbb{N}$, we obtain that

$$
0<y_{n}<\frac{1}{\delta n} \quad \text { for all } n \in \mathbb{N} .
$$

It then follows by the Squeeze Theorem for sequences that $\left(y_{n}\right)$ converges to 0 .
(b) Define $x_{n}=x^{n}$. Prove that if $|x|<1$, then $\left(x_{n}\right)$ converges. What is $\lim _{n \rightarrow \infty} x_{n}$?
Solution: We show that $\lim _{n \rightarrow \infty}\left|x_{n}\right|=0$. This will imply that $\left(x_{n}\right)$ converges to 0 if $|x|<1$.
Observe that

$$
\begin{aligned}
\left|x_{n}\right| & =|x|^{n} \\
& =\frac{1}{\left(\frac{1}{|x|}\right)^{n}} \\
& =\frac{1}{(1+\delta)^{n}}
\end{aligned}
$$

where $\delta=\frac{1}{|x|}-1>0$, since $|x|<1$. It then follows by part (a) that

$$
\lim _{n \rightarrow \infty}\left|x_{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{(1+\delta)^{n}}=0
$$

4. Let $\left(x_{n}\right)$ denote a sequence of real numbers.
(a) Prove that if $\left(x_{n}\right)$ converges then $\left(x_{n}^{2}\right)$ converges.

Proof: Observe that $x_{n}^{2}=x_{n} \cdot x_{n}$. Consequently, if $\left(x_{n}\right)$ converges to $x \in \mathbb{R}$, then $\left(x_{n}^{2}\right)$ converges to x^{2}.
(b) Show that the converse of the statement in part (a) is not true.

Solution: Take $x_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$. Then, $x_{n}^{2}=1$ for all $n \in \mathbb{N}$. Thus, $\left(x_{n}^{2}\right)$ converges, but $\left(x_{n}\right)$ does not.
5. Let x, a and b denote a real numbers.
(a) Derive the factorization: $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)$. Suggestion: Let $S=1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}$ and compute $x S$ and $x S-S$.
Solution: Compute

$$
x S=x+x^{2}+\cdots+x^{n-1}+x^{n}=S-1+x^{n} .
$$

It then follows that

$$
x S-S=x^{n}-1,
$$

from which we get that

$$
x^{n}-1=(x-1) S=(x-1)\left(1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}\right) .
$$

(b) Derive the factorization formula

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} n+a^{n-3} b^{2}+\cdots+b^{n-1}\right)
$$

Solution: If $b=0$, there is nothing to prove since $a^{n}=a a^{n-1}$. Thus, assume that $b \neq 0$ and write

$$
\begin{aligned}
a^{n}-b^{n} & =b^{n}\left[\left(\frac{a}{b}\right)^{n}-1\right] \\
& =b^{n}\left(x^{n}-1\right),
\end{aligned}
$$

where we have set $x=\frac{a}{b}$. Thus, using the factorization formula derived in part (a),

$$
\begin{aligned}
a^{n}-b^{n} & =b^{n}(x-1)\left(1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}\right) \\
& =b^{n}\left(\frac{a}{b}-1\right)\left(1+\frac{a}{b}+\left(\frac{a}{b}\right)^{2}+\cdots+\left(\frac{a}{b}\right)^{n-2}+\left(\frac{a}{b}\right)^{n-1}\right) \\
& =(a-b) b^{n-1}\left(1+\frac{a}{b}+\frac{a^{2}}{b^{2}}+\cdots+\frac{a^{n-2}}{b^{n-2}}+\frac{a^{n-1}}{b^{n-1}}\right) \\
& =(a-b)\left(b^{n-1}+a b^{n-2}+a^{2} b^{n-3}+\cdots+a^{n-2} b+a^{n-1}\right),
\end{aligned}
$$

which was to be shown.
(c) Let a and b denote positive real numbers, and n a natural number. Prove that

$$
a>b \text { if and only if } a^{n}>b^{n}
$$

Solution: Assume that $a>b$; then $a-b>0$. It then follows that

$$
a^{n}-b^{n}=(a-b)\left(b^{n-1}+a b^{n-2}+a^{2} b^{n-3}+\cdots+a^{n-2} b+a^{n-1}\right)>0
$$

since a and b are positive. Thus, $a^{n}>b^{n}$.
Conversely, assume that $a^{n}>b^{n}$. Then, $a^{n}-b^{n}>0$. Thus,

$$
\left(b^{n-1}+a b^{n-2}+a^{2} b^{n-3}+\cdots+a^{n-2} b+a^{n-1}\right)(a-b)>0 .
$$

Multiplying by the multiplicative inverse of $b^{n-1}+a b^{n-2}+a^{2} b^{n-3}+\cdots+$ $a^{n-2} b+a^{n-1}$, which exists and is positive because a and b are positive, we obtain that

$$
a-b>0
$$

which implies that $a>b$.
6. Given $a>0$ and $n \in \mathbb{N}$, prove that there exists a unique positive solution to the equation $x^{n}=a$.

Note: In this problem, you might need to use the binomial expansion

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}, \text { where }\binom{n}{k}=\frac{n!}{k!(n-k)!}, \text { for } k=0,1,2, \ldots, n
$$

Solution: Suppose first that $a>1$. (Note that if $a=1$, the $x=1$ solves $\left.x^{n}=a\right)$.
Define $A=\left\{t \in \mathbb{R} \mid t>0\right.$ and $\left.t^{n} \leqslant a\right\}$. Then, for the case $a>1, A \neq \emptyset$ since $1 \in A$, because $1=1^{n}<a$. Next, we see that A is bounded. This follows from the fact that $a<a^{n}$ for all $n \in \mathbb{N}$ since $a>1$. It then follows that $t \in A$ implies that $t>0$ and

$$
t^{n}<a<a^{n}
$$

from which we get that $t<a$, and therefore a is an upper bound for A. Thus, the supremum of A exists. Let $s=\sup (A)$. We show that $s^{n}=a$. For each $k \in \mathbb{N}$, there exists $t_{k} \in A$ such that

$$
s-\frac{1}{k}<t_{k} \leqslant s
$$

It then follows that

$$
\lim _{k \rightarrow \infty} t_{k}=s
$$

Consequently,

$$
\lim _{k \rightarrow \infty} t_{k}^{n}=s^{n}
$$

which implies that $s^{n} \leqslant a$, since $t_{k}^{n} \leqslant a$ for all $k \in \mathbb{N}$.
Suppose, by way of contradiction, that $s^{n}<a$. Then, $a-s^{n}>0$ and therefore

$$
\frac{a-s^{n}}{\sum_{k=1}^{n}\binom{n}{k} s^{k}}>0
$$

Then, there exists an integer $m>1$ such that

$$
\frac{1}{m}<\frac{a-s^{n}}{\sum_{k=1}^{n}\binom{n}{k} s^{k}}
$$

Put $\gamma=\frac{1}{m}$; then $0<\gamma<1$ and

$$
\begin{equation*}
\gamma\left(\sum_{k=1}^{n}\binom{n}{k} s^{k}\right)<a-s^{n} \tag{1}
\end{equation*}
$$

By the binomial expansion theorem,

$$
\begin{aligned}
(s+\gamma)^{n} & =s^{n}+\sum_{k=1}^{n}\binom{n}{k} s^{k} \gamma^{n-k} \\
& <s^{n}+\gamma\left(\sum_{k=1}^{n}\binom{n}{k} s^{k}\right),
\end{aligned}
$$

since $\gamma<1$. In then follows from the estimate in (1) that

$$
(s+\gamma)^{n}<a
$$

which shows that $s+\gamma \in A$, which is a contradiction since $s=\sup (A)$. Consequently, $s^{n}=a$. Thus, $x^{n}=a$ has a positive solution for the case $a>1$.

To show that there is at most one solution to $x^{n}=a$. Suppose that there exist positive, real numbers, s_{1} and s_{2}, such that $s_{1}^{n}=a$ and $s_{2}^{n}=a$. It then follows that

$$
0=s_{1}^{n}-s_{2}^{n}=\left(s_{1}-s_{2}\right)\left(s_{1}^{n-1}+s_{1}^{n-2} s_{2}+\cdots s_{2}^{n-1}\right)
$$

from which we obtain that $s_{1}-s_{2}=0$, which implies that $s_{1}=s_{2}$.
Finally, observe that if $0<a<1$, then $\frac{1}{a}>1$; so, by what we have just proved, there exists a unique $y \in \mathbb{R}$ with $y^{n}=\frac{1}{a}$. Then $\frac{1}{y^{n}}=a$, or $\left(\frac{1}{y}\right)^{n}=a$. Thus, $x=\frac{1}{y}$ solves $x^{n}=a$.
7. Let a and b denote positive real numbers. For each natural number n, let $a^{1 / n}$ denote the unique positive solution to the equation $x^{n}=a$.
(a) Prove that if $b \leqslant 1$, then $b^{m} \leqslant 1$ for all $m \in \mathbb{N}$.

Solution: Suppose that $b \leqslant 1$. We prove that $b^{m} \leqslant 1$ for all $m \in \mathbb{N}$ by induction on m.
For $m=1$, the result follows by the assumption that $b \leqslant 1$.
Suppose that $b^{m} \leqslant 1$ and consider

$$
b^{m+1}=b^{m} \cdot b \leqslant(1) \cdot(1)=1 .
$$

(b) Show that if $a>1$, then $a^{1 / n}>1$ for all $n \in \mathbb{N}$.

Solution: Suppose that $a>1$. We prove that $a^{1 / n}>1$ by contradiction. Thus, suppose that $a^{1 / n} \leqslant 1$. Then, by the result of the previous part,

$$
\left(a^{1 / n}\right)^{n} \leqslant 1
$$

from which we get that $a \leqslant 1$, which contradicts the hypothesis that $a>1$. Hence, $a>1$ implies that $a^{1 / n}>1$.
(c) Prove that if $a>1$, then $a^{m / n}>1$ for all $m, n \in \mathbb{N}$, where $a^{m / n}=\left(a^{1 / n}\right)^{m}$.

Solution: Suppose that $a>1$. It then follows from part (b) that $a^{1 / n}>1$. Consequently, $\left(a^{1 / n}\right)^{m}>1$, which can be proved by an induction argument like the one used in part (a). It then follows that

$$
a^{m / n}>1
$$

8. Let a and b denote positive real, and n a natural number. Prove that

$$
a>b \text { if and only if } a^{1 / n}>b^{1 / n} .
$$

Proof: Let $a^{1 / n}$ and $b^{1 / n}$ be the unique positive solutions to the equations $x^{n}=a$ and $x^{n}=b$, respectively. Then, $\left(a^{1 / n}\right)^{n}=a$ and $\left(b^{1 / n}\right)^{n}=b$. By the result of part (c) of Problem 5,

$$
a^{1 / n}>b^{1 / n} \text { if and only if }\left(a^{1 / n}\right)^{n}>\left(b^{1 / n}\right)^{n},
$$

from which we get that

$$
a^{1 / n}>b^{1 / n} \text { if and only if } a>b
$$

9. Let a denote a positive real number.
(a) Show that if $a>1$, then $a-1>n\left(a^{1 / n}-1\right)$ for all $n \in \mathbb{N}$. Deduce that $\lim _{n \rightarrow \infty} a^{1 / n}=1$, for $a>1$.
Solution: Suppose that $a>1$ and compute

$$
a-1=\left(a^{1 / n}\right)^{n}-1=\left(a^{1 / n}-1\right)\left(a^{(n-1) / n}+a^{(n-2) / n}+\cdots+a^{1 / n}+1\right) .
$$

Then using the result of part (c) of Problem 7, we get that

$$
a-1>\left(a^{1 / n}-1\right) \cdot n,
$$

which was to be shown.
It then follows that

$$
0<a^{1 / n}-1<\frac{a-1}{n} \quad \text { for all } n \in \mathbb{N} .
$$

Consequently, by the Squeeze Theorem for sequences,

$$
\lim _{n \rightarrow \infty} a^{1 / n}=1
$$

(b) Prove that for any positive real number $a, \lim _{n \rightarrow \infty} a^{1 / n}=1$.

Solution: Let $a>0$. Then, $a>1, a=1$ or $0<a<1$. If $a>1$, then result follows by part (a). If $a=1$ the $a^{1 / n}=1$ for all $n \in \mathbb{N}$ and so the result also holds true in this case. Thus, it remains to consider the case $0<a<1$.
If $0<a<1$, then $\frac{1}{a}>1$, and so, by part (a),

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{a}\right)^{1 / n}=1
$$

It then follows that

$$
\lim _{n \rightarrow \infty} \frac{1}{a^{1 / n}}=1
$$

from which we obtain that

$$
\lim _{n \rightarrow \infty} a^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{a^{1 / n}}}=\frac{1}{\lim _{n \rightarrow \infty} \frac{1}{a^{1 / n}}}=1
$$

10. Let $\left(x_{n}\right)$ denote a sequence of real numbers and $\left(x_{n_{k}}\right)$ denote a subsequence of $\left(x_{n}\right)$.
(a) Prove that if $\left(x_{n}\right)$ converges then $\left(x_{n_{k}}\right)$ converges.

Proof: Suppose that $\left(x_{n}\right)$ converges to x; we show that $\left(x_{n_{k}}\right)$ also converges to x.
Let $\varepsilon>0$ be given. Then, there exists $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
n \geqslant N_{1} \Rightarrow\left|x_{n}-x\right|<\varepsilon \tag{2}
\end{equation*}
$$

Since $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$, we can find $K_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
k \geqslant K_{1} \Rightarrow n_{k} \geqslant N_{1} \tag{3}
\end{equation*}
$$

It then follows from (2) and (3) that

$$
k \geqslant K_{1} \Rightarrow\left|x_{n_{k}}-x\right|<\varepsilon,
$$

which shows that $\left(x_{n_{k}}\right)$ converges to x.
(b) Show that the converse of the statement proved in part (a) is not true.

Solution: Let $x_{n}=(-1)^{n}$ for all all $n \in \mathbb{N}$ and define $n_{k}=2 k$ for all $k \in \mathbb{N}$. Then, $x_{n_{k}}=1$ for all $k \in \mathbb{N}$; so that, $\left(x_{n_{k}}\right)$ converges to 1 , but the sequence $\left(x_{n}\right)$ does not converge.
11. Let $x_{n}=\frac{1}{\sqrt{n-1}}$ for $n \geqslant 2$. Show that $\left(x_{n}\right)$ converges and compute its limit. Solution: We show that $\left(x_{n}\right)$ converges to 0 .
Let $\varepsilon>0$ be given. Then, $\varepsilon^{2}>0$. By the Archimedean Property, there exists $n_{o} \in \mathbb{N}$ such that

$$
n \geqslant n_{o} \Rightarrow 0<\frac{1}{n}<\varepsilon^{2}
$$

Let $N=n_{o}+1$. Then, $n \geqslant N$ implies that $n-1 \geqslant n_{o}$, from which we get that

$$
n \geqslant N \Rightarrow 0<\frac{1}{n-1}<\varepsilon^{2}
$$

Hence,

$$
n \geqslant N \Rightarrow 0<\frac{1}{\sqrt{n-1}}<\varepsilon
$$

We have therefore proved that

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n-1}}=0
$$

12. Let $\left(x_{n}\right)$ be a sequence of real numbers satisfying $x_{n} \geqslant 0$ for all $n \in \mathbb{N}$ and define $y_{n}=\sqrt{x_{n}}$ for all $n \in \mathbb{N}$. Suppose that $\left(x_{n}\right)$ converges to 0 . Prove that the sequence $\left(y_{n}\right)$ converges and compute its limit.

Proof: Assume that $x_{n} \geqslant 0$ for all $n \in \mathbb{N}$ and that $\left(x_{n}\right)$ converges to 0 . Define $y_{n}=\sqrt{x_{n}}$ for all $n \in \mathbb{N}$.
Let $\varepsilon>0$ be given. Then, $\varepsilon^{2}>0$. Thus, since $\left(x_{n}\right)$ converges to 0 , there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|x_{n}\right|<\varepsilon^{2}
$$

Thus, since $x_{n} \geqslant 0$ for all $n \in \infty$,

$$
n \geqslant N \Rightarrow x_{n}<\varepsilon^{2}
$$

from which we get that

$$
n \geqslant N \Rightarrow \sqrt{x_{n}}<\varepsilon
$$

Thus, we have shown that for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
n \geqslant N \Rightarrow\left|y_{n}-0\right|<\varepsilon
$$

which is equivalent to saying that $\left(y_{n}\right)$ converges to 0 .

