Handout #2: The Real Numbers System Axioms

I. Field Axioms

The set of real numbers \mathbb{R} has two algebraic operations: **addition** (the sum of any two elements x and y of \mathbb{R} being denoted by x + y) and **multiplication** (the product of any two elements x and y of \mathbb{R} being denoted by xy) defined for any pair of elements in the set. These operations satisfy the properties of a **field**, which are the following:

Closure properties

 (F_1) For any two real numbers x and y, x + y and xy are real numbers.

Properties of addition

- (F₂) (Commutativity). For any x and y in \mathbb{R} , x + y = y + x.
- (F_3) (Associativity). For any three elements x, y, and z in \mathbb{R} ,

$$(x+y) + z = x + (y+z).$$

- (F₄) (*Existence of an additive identity*). There exists a real number 0 with the property: x + 0 = x for all x in \mathbb{R} .
- (F₅) (*Existence of additive inverses*). For every x in \mathbb{R} , there exists y in \mathbb{R} with the property: x + y = 0.

Properties of multiplication

- (F_6) (*Commutativity*). For any pair of real numbers x and y, xy = yx.
- (F_7) (Associativity). For any three elements x, y, and z in \mathbb{R} ,

$$(xy)z = x(yz).$$

- (F₈) (*Existence of an multiplicative identity*). There exists a real number 1 such that $1 \neq 0$ and $x \cdot 1 = x$ for all x in \mathbb{R} .
- (F₉) (Existence of multiplicative inverses for non-zero real numbers). For every x in \mathbb{R} such that $x \neq 0$, there exists y in \mathbb{R} such that xy = 1.

Distributive property

 (F_{10}) For any real numbers x, y and z, x(y+z) = xy + xz.

II. Order Axioms

We designate a certain subset P of \mathbb{R} as the "positive numbers" in \mathbb{R} . This set P is "invariant" under the operations in \mathbb{R} ; i.e., if x and y are in P, then x + y and xy are also in P. The set P induces an **order relation** in \mathbb{R} as follows: we say that x < y if $y - x \in P$. The notation $x \leq y$ means x < y or x = y. Similarly, we define x > y to mean $x - y \in P$, and $x \geq y$ to mean x > y or x = y.

The field \mathbb{R} is an **ordered field** since the following properties hold:

- (O₁) (*Trichotomy property*). If $x \in \mathbb{R}$, then x = 0 or x > 0 or x < 0. (Note: only one of these three possibilities can hold.)
- (O_2) If x > 0 and y > 0, then x + y > 0.
- (O_3) If x > 0 and y > 0, then xy > 0.

III. Completeness Axiom

Let A be a subset of \mathbb{R} . We say that b is an **upper bound** for A if $x \leq b$ for all $x \in A$. A number c is called a **least upper bound** for A if c is an upper bound for A and $c \leq b$ for any upper bound b for A. The ordered field \mathbb{R} is said to be **complete** since it satisfies the following

(C) (Least upper bound property). Every non-empty subset of \mathbb{R} that has an upper bound has a least upper bound.

Remarks

- 1. Given $x \in \mathbb{R}$, the additive inverse for x given by the field axiom (F_5) is unique and is denoted by -x. The expression y x, for any pair of real numbers x and y, is then interpreted as y + (-x).
- 2. Given a non-zero real number x, the multiplicative inverse for x given by the field axiom (F_9) is unique and is denoted by x^{-1} or $\frac{1}{x}$. The expression $\frac{y}{x}$, for $x, y \in \mathbb{R}$ with $x \neq 0$, is then interpreted as yx^{-1} or $y\frac{1}{x}$.
- 3. The set of rational numbers \mathbb{Q} is a sub-field of \mathbb{R} ; that is, the field axioms (F_1) – (F_{10}) hold true for \mathbb{Q} as well. The rational numbers are also an ordered field with the same order relation defined in \mathbb{R} . However, \mathbb{Q} is not a complete field.