Problem Set #1: The Set of Real Numbers

- 1. Let n be a natural number. Show that n is a multiple of 3 if and only if n^2 is a multiple of 3.
- 2. Show that $\sqrt{3}$ is irrational.
- 3. The following are consequences of the field axioms for the real numbers:
 - (a) (*The cancelation laws*)
 - (i) Let x, y and z be real numbers. If x + z = y + z, then x = y.
 - (ii) Let x, y and z be real numbers with $z \neq 0$. If xz = yz, then x = y.
 - (b) Show that 0 and 1 are unique.
 - (c) Given $x \in \mathbb{R}$, -x and x^{-1} are unique.
 - (d) $x \cdot 0 = 0$ for all $x \in \mathbb{R}$.
 - (e) Prove that (-1)x = -x, the additive inverse of x given by the field axiom (F_5) , for every $x \in \mathbb{R}$.
 - (f) $(-1) \cdot (-x) = x$ for all $x \in \mathbb{R}$.
- 4. Let a and b be real numbers. If ab = 0, then either a = 0 or b = 0.
- 5. Show that the set of rational numbers \mathbb{Q} is a sub-field of the set of real numbers; that is, prove that for rational numbers q and $r, q + r \in \mathbb{Q}$ and $qr \in \mathbb{Q}$.
- 6. The following are consequences of the field and order axioms for the real numbers. Let x, y and z be real numbers.
 - (a) If x < y and y < z, then x < z.
 - (b) If x < y, then x + z < y + z.
 - (c) If x < y and z > 0, then xz < yz.
 - (d) If x < 0 and y < 0, then xy > 0.
 - (e) If x < y and z < 0, then yz < xz.
 - (f) If x < y, then -y < -x.
 - (g) $x^2 \ge 0$ for any real number x.
 - (h) 1 > 0
 - (i) If x > 0, then $x^{-1} > 0$.
 - (j) If 0 < x < y, then $0 < \frac{1}{y} < \frac{1}{x}$.