Problem Set \#1: The Set of Real Numbers

1. Let n be a natural number. Show that n is a multiple of 3 if and only if n^{2} is a multiple of 3 .
2. Show that $\sqrt{3}$ is irrational.
3. The following are consequences of the field axioms for the real numbers:
(a) (The cancelation laws)
(i) Let x, y and z be real numbers. If $x+z=y+z$, then $x=y$.
(ii) Let x, y and z be real numbers with $z \neq 0$. If $x z=y z$, then $x=y$.
(b) Show that 0 and 1 are unique.
(c) Given $x \in \mathbb{R},-x$ and x^{-1} are unique.
(d) $x \cdot 0=0$ for all $x \in \mathbb{R}$.
(e) Prove that $(-1) x=-x$, the additive inverse of x given by the field axiom $\left(F_{5}\right)$, for every $x \in \mathbb{R}$.
(f) $(-1) \cdot(-x)=x$ for all $x \in \mathbb{R}$.
4. Let a and b be real numbers. If $a b=0$, then either $a=0$ or $b=0$.
5. Show that the set of rational numbers \mathbb{Q} is a sub-field of the set of real numbers; that is, prove that for rational numbers q and $r, q+r \in \mathbb{Q}$ and $q r \in \mathbb{Q}$.
6. The following are consequences of the field and order axioms for the real numbers. Let x, y and z be real numbers.
(a) If $x<y$ and $y<z$, then $x<z$.
(b) If $x<y$, then $x+z<y+z$.
(c) If $x<y$ and $z>0$, then $x z<y z$.
(d) If $x<0$ and $y<0$, then $x y>0$.
(e) If $x<y$ and $z<0$, then $y z<x z$.
(f) If $x<y$, then $-y<-x$.
(g) $x^{2} \geq 0$ for any real number x.
(h) $1>0$
(i) If $x>0$, then $x^{-1}>0$.
(j) If $0<x<y$, then $0<\frac{1}{y}<\frac{1}{x}$.
