Problem Set \#2: Inequalities

1. Given any real number x, we define the absolute value of x to be

$$
|x|=\left\{\begin{array}{cl}
x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Prove the following statements:
(a) For any $x \in \mathbb{R},|x| \geq 0$, and $|x|=0$ iff $x=0$.
(b) For any $x \in \mathbb{R}, x \leqslant|x|$.
(c) For any real numbers a and $b,|a b|=|a||b|$.
(d) For any real numbers a and b with $b>0,|a|<b$ if and only if $-b<a<b$.
(e) For any real numbers a and b with $b>0,|a|>b$ if and only if $a<-b$ or $a>b$.
(f) For any real number $x,|x|^{2}=x^{2}$. Conclude therefore that $|x|=\sqrt{x^{2}}$.
2. Let x and y be real numbers such that $x>0$ and $y>0$.

Prove that $x<y$ iff $x^{2}<y^{2}$.
3. Let a and b be real numbers.
(a) (The Triangle Inequality). Prove that $|a+b| \leqslant|a|+|b|$.
(b) Prove that $||a|-|b|| \leq|a-b|$.
4. Let a be a real number satisfying $|a|<\varepsilon$ for every $\varepsilon>0$. Prove that $a=0$.
5. Let a and b be a real numbers satisfying $a \leqslant b+\varepsilon$ for every $\varepsilon>0$. Prove that $a \leqslant b$.

