Fall 2012 1

Problem Set #2: Inequalities

1. Given any real number x, we define the **absolute value** of x to be

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Prove the following statements:

- (a) For any $x \in \mathbb{R}$, $|x| \ge 0$, and |x| = 0 iff x = 0.
- (b) For any $x \in \mathbb{R}, x \leq |x|$.
- (c) For any real numbers a and b, |ab| = |a||b|.
- (d) For any real numbers a and b with b > 0, |a| < b if and only if -b < a < b.
- (e) For any real numbers a and b with b > 0, |a| > b if and only if a < -b or a > b.
- (f) For any real number x, $|x|^2 = x^2$. Conclude therefore that $|x| = \sqrt{x^2}$.
- 2. Let x and y be real numbers such that x > 0 and y > 0. Prove that x < y iff $x^2 < y^2$.
- 3. Let a and b be real numbers.
 - (a) (The Triangle Inequality). Prove that $|a + b| \leq |a| + |b|$.
 - (b) Prove that $||a| |b|| \le |a b|$.
- 4. Let a be a real number satisfying $|a| < \varepsilon$ for every $\varepsilon > 0$. Prove that a = 0.
- 5. Let a and b be a real numbers satisfying $a \leq b + \varepsilon$ for every $\varepsilon > 0$. Prove that $a \leq b$.