Problem Set \#4: Completeness Axiom (Part II)

Read: Chapter 5 on Upper Bounds and Suprema, pp. 80-85, in Michael J. Schramm' book: "Introduction to Real Analysis."

Problems:

1. Let $x \in \mathbb{R}$ and define $A_{x}=\{m \in \mathbb{Z} \mid m \leq x\}$.
(a) Prove that A_{x} is non-empty. Deduce that $\sup A_{x}$ exists and prove that there exist $n \in A_{x}$ such that $\sup A_{x}<n+1$.
(b) (The Archimedean Property). For any $x \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that $n \leq x<n+1$.
2. Use the Archimedean Property established in part (b) of Problem 1 in this Problem Set to prove the following statements.
(a) For every $\varepsilon>0$ there exists $n_{o} \in \mathbb{N}$ such that $0<\frac{1}{n}<\varepsilon$ for all $n \in \mathbb{N}$ such that $n \geq n_{o}$.
(b) For every x and y in \mathbb{R} such that $x>0$ and $y>0$, there exists $n \in \mathbb{N}$ such that $y<n x$.
3. Let x and y be real numbers satisfying $x<y$.
(a) Prove that there exists $m \in \mathbb{N}$ such that $m(y-x)>1$.
(b) With m as given by part (a), prove that there exists $n \in \mathbb{Z}$ such that $n \leqslant m x<$ $n+1$.
(c) With m and n given by parts (a) and (b), show that $m x<n+1<m y$.
(d) (Density of \mathbb{Q} in \mathbb{R}). Prove that between any two real numbers there exits a rational number.
4. Let p be a positive real number. In this exercise we prove that there exists a real number x such that $x^{2}=p$; that is, every positive real number has a square root.
(a) Assume first that $p \geq 1$, and define $A=\left\{t \in \mathbb{R} \mid t>0\right.$ and $\left.t^{2} \leq p\right\}$. Prove that $\sup A$ exists.
(b) Let $s=\sup A$ and show that $s^{2}=p$; that is, s is a solution of $x^{2}=p$ for $p \geq 1$.
(c) Let $0<p<1$. Prove that $x^{2}=p$ has a solution in \mathbb{R}.
(d) Prove that for any positive number, p, there exists a unique positive solution to the equation $x^{2}=p$.
5. Prove that \mathbb{Q} is not a complete ordered field.
