Problem Set #4: Completeness Axiom (Part II)

Read: Chapter 5 on *Upper Bounds and Suprema*, pp. 80–85, in Michael J. Schramm' book: "Introduction to Real Analysis."

Problems:

- 1. Let $x \in \mathbb{R}$ and define $A_x = \{m \in \mathbb{Z} \mid m \leq x\}$.
 - (a) Prove that A_x is non-empty. Deduce that $\sup A_x$ exists and prove that there exist $n \in A_x$ such that $\sup A_x < n + 1$.
 - (b) (The Archimedean Property). For any $x \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that $n \leq x < n+1$.
- 2. Use the Archimedean Property established in part (b) of Problem 1 in this Problem Set to prove the following statements.
 - (a) For every $\varepsilon > 0$ there exists $n_o \in \mathbb{N}$ such that $0 < \frac{1}{n} < \varepsilon$ for all $n \in \mathbb{N}$ such that $n \ge n_o$.
 - (b) For every x and y in \mathbb{R} such that x > 0 and y > 0, there exists $n \in \mathbb{N}$ such that y < nx.
- 3. Let x and y be real numbers satisfying x < y.
 - (a) Prove that there exists $m \in \mathbb{N}$ such that m(y x) > 1.
 - (b) With m as given by part (a), prove that there exists $n \in \mathbb{Z}$ such that $n \leq mx < n+1$.
 - (c) With m and n given by parts (a) and (b), show that mx < n + 1 < my.
 - (d) (Density of \mathbb{Q} in \mathbb{R}). Prove that between any two real numbers there exits a rational number.
- 4. Let p be a positive real number. In this exercise we prove that there exists a real number x such that $x^2 = p$; that is, every positive real number has a square root.
 - (a) Assume first that $p \ge 1$, and define $A = \{t \in \mathbb{R} \mid t > 0 \text{ and } t^2 \le p\}$. Prove that sup A exists.
 - (b) Let $s = \sup A$ and show that $s^2 = p$; that is, s is a solution of $x^2 = p$ for $p \ge 1$.
 - (c) Let $0 . Prove that <math>x^2 = p$ has a solution in \mathbb{R} .
 - (d) Prove that for any positive number, p, there exists a unique positive solution to the equation $x^2 = p$.
- 5. Prove that \mathbb{Q} is not a complete ordered field.