Problem Set #5: Completeness Axiom (Part III)

Read: Chapter 5 on *Upper Bounds and Suprema*, pp. 80–85, in Michael J. Schramm's book: "Introduction to Real Analysis."

Read: Section 9.2 on *Convergence*, pp. 147–150, in Michael J. Schramm's book: "Introduction to Real Analysis."

Definitions and Notation.

A sequence of real numbers is a real-valued function defined on the set of natural numbers, $f: \mathbb{N} \to \mathbb{R}$. For each $n \in \mathbb{N}$, we write $f(n) = x_n$, and denote the sequence f by its values (x_n) . We say that a sequence (x_n) converges to $x \in \mathbb{R}$ iff for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$, which depends on ε , such that

$$n \ge N \implies |x_n - x| < \varepsilon.$$

When (x_n) converges to x we write $\lim_{n \to \infty} x_n = x$, and say that x is the **limit** of the sequence (x_n) .

A sequence (x_n) is said to be **increasing** if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$; the sequence (x_n) is said to be **decreasing** if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. A sequence (x_n) is said to be **monotone** if it is either increasing or decreasing. The sequence (x_n) is said to be **bounded** if there exists a real number M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Let (x_n) be a sequence of real numbers, and let $(n_j) = (n_1, n_2, n_3, ...)$ be an increasing sequence of distinct natural numbers, then the sequence (x_{n_j}) is called a **subsequence** of (x_n) .

A sequence (x_n) of real numbers is said to be a **Cauchy sequence** iff for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$, which depends on ε , such that

$$n, m \ge N \implies |x_n - x_m| < \varepsilon.$$

Problems:

- 1. Let (x_n) be a sequence of real numbers. Prove that if (x_n) converges, then its limit is unique.
- 2. [The Squeeze Theorem for Sequences] Let (x_n) , (y_n) and (z_n) be sequences of real numbers. Suppose that there exists $n_1 \in \mathbb{N}$ such that

$$x_n \leqslant y_n \leqslant z_n \quad \text{for all } n \ge n_1.$$

Prove that if (x_n) and (z_n) converge and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \ell$, then (y_n) converges to ℓ .

Math 101. Rumbos

- 3. Prove that the following sequences converge and compute their limits.
 - (a) (x_n) where $x_n = c$ for all $n \in \mathbb{N}$ for a given $c \in \mathbb{R}$. (b) $\left(\frac{1}{n}\right)$ (c) $\left(\frac{1}{2^n}\right)$
- 4. Let (x_n) and (y_n) be sequences of real numbers. Suppose that (x_n) and (y_n) converge. Prove that the sequence $(x_n + y_n)$ also converges and compute its limit.
- 5. Prove that if a sequence of real numbers converges, then it must be bounded; in particular, show that if (y_n) converges, then there exists a real number M > 0 such that

$$|y_n| \leq M$$
 for all $n \in \mathbb{N}$.

- 6. Let (x_n) and (y_n) be sequences of real numbers. Suppose that (x_n) and (y_n) converge. Prove that the sequence $(x_n \cdot y_n)$ also converges and compute its limit.
- 7. Let (x_n) and (y_n) be sequences of real numbers. Suppose that $\lim_{n \to \infty} x_n = 0$ and that (y_n) is bounded. Prove that $(x_n \cdot y_n)$ converges and compute its limit.
- 8. Prove that for any real number x there exists a sequence (q_n) of rational values that converges to x.
- 9. Let (x_n) be a sequence of real numbers.
 - (a) Prove that if (x_n) is increasing and bounded from above, then (x_n) converges.
 - (b) Prove that if (x_n) is decreasing and bounded from below, then (x_n) converges.
 - (c) Prove that any bounded and monotone sequence of real numbers must converge.