Problem Set #6: Convergence of Sequences

Read: Chapter 5 on *Upper Bounds and Suprema*, pp. 80–85, in Michael J. Schramm's book: "Introduction to Real Analysis."

Read: Section 9.2 on *Convergence*, pp. 147–150, in Michael J. Schramm's book: "Introduction to Real Analysis."

Definitions and Notation.

- Monotone Sequences. A sequence (x_n) is said to be **increasing** if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$; the sequence (x_n) is said to be **decreasing** if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. A sequence (x_n) is said to be **monotone** if it is either increasing or decreasing.
- Bounded Sequences. The sequence (x_n) is said to be **bounded** if there exists a real number M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.
- Subsequences. Let (x_n) be a sequence of real numbers, and let $(n_j) = (n_1, n_2, n_3, ...)$ be an increasing sequence of distinct natural numbers, then the sequence (x_{n_j}) is called a **subsequence** of (x_n) .
- Cauchy Sequences. A sequence (x_n) of real numbers is said to be a Cauchy sequence iff for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$, which depends on ε , such that

$$n, m \ge N \implies |x_n - x_m| < \varepsilon.$$

Problems:

- 1. In this problem, we show that any sequence of real numbers has a monotone subsequence.
 - (a) Let B denote an infinite subset of \mathbb{N} . Prove that we can write

$$B = \{n_k \mid k \in \mathbb{N}\},\$$

where

$$n_1 < n_2 < n_3 < \cdots$$

Furthermore, B is unbounded and, for every M > 0, there exists $K \in \mathbb{N}$ such that

$$k \ge K \Rightarrow n_k > M;$$

we write: $n_k \to \infty$ as $k \to \infty$.

Math 101. Rumbos

(b) Let (x_n) denote a sequence of real numbers and consider the following subset of the natural numbers

$$B = \{ n \in \mathbb{N} \mid x_n \ge x_m \text{ for all } m \ge n \}.$$

(i) Prove that if B is finite or empty, then there exist $n_1, n_2, \ldots, n_k, \ldots$ such that

$$n_1 < n_2 < \cdots < n_k < \cdots$$

and

 $x_{n_k} < x_{n_{k+1}}$

for all $k \in \mathbb{N}$.

(ii) Prove that if B is infinite, then there exist $n_1, n_2, \ldots, n_k, \ldots$ such that

 $n_1 < n_2 < n_3 < \cdots,$

where $n_k \to \infty$ as $k \to \infty$, and

$$x_{n_{k+1}} \leqslant x_{n_k}$$
 for all $k \in \mathbb{N}$.

- (c) Deduce that every sequence of real numbers has a monotone subsequence.
- 2. Let (x_n) be a bounded sequence of real numbers. Prove that (x_n) has a subsequence which converges.
- 3. Let (x_n) be a sequence of real numbers. Prove that if (x_n) converges, then it is a Cauchy sequence.
- 4. Prove that every Cauchy sequence of real numbers must be bounded.
- 5. Let (x_n) be a Cauchy sequence of real numbers. Prove that if (x_n) has a subsequence that converges to $x \in \mathbb{R}$, then $\{x_n\}$ converges and $\lim_{n \to \infty} x_n = x$.
- 6. *Cauchy's Criterion for Convergence.* Prove that every Cauchy sequence of real numbers must converge.