Assignment \#10

Due on Wednesday, October 31, 2012
Read Section 5.3, The Area Function as a Riemann Integral, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 15-5, pp. 322-324, in The Calculus Primer by William L. Schaaf.

Background and Definitions

- Theorem (Some Integration Facts). Let C denote an arbitrary constant.
(i) $\int k d x=k x+C$, for any constant k.
(ii) $\int x^{m} d x=\frac{1}{m+1} x^{m+1}+C$ for $m=1,2,3, \ldots$.
(iii) $\int \cos x d x=\sin x+C$.

Do the following problems

1. Translate of a Function. Let f denote a piecewise continuous function that is defined for all real numbers.
For any given constant, c, define another function, denoted f_{c}, by

$$
f_{c}(t)=f(t-c), \quad \text { for all } t \in \mathbb{R}
$$

(a) What is f_{0} ?
(b) If $c>0$. Explain why the graph of f_{c} is the same as that of f translated a distance c to the right.
2. Translate of a Function (continued). Let f and c be as in Problem 2. Explain why the integration formula

$$
\begin{equation*}
\int_{c}^{c+x} f_{c}(t) d t=\int_{0}^{x} f(t) d t, \quad \text { for all } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

is true.
3. In the lecture notes we derived the integration formula

$$
\int_{a}^{x} \cos t d t=\sin x-\sin a, \quad \text { for } x \in \mathbb{R} \text { and } a \in \mathbb{R}
$$

Use the integration formula in (1) and the trigonometric identities

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

to derive a formula for computing $\int_{0}^{x} \sin t d t$.
Evaluate the indefinite integral $\int \sin x d x$.
4. Area Between the Graphs of Two Functions. Let f and g denote two piecewise continuous functions defined on the interval $[a, b]$. Suppose that

$$
f(t) \leqslant g(t), \quad \text { for all } t \in[a, b] .
$$

Let R denote the region in the $t y$-plane that lies below the graph of g, above the graph of f, and between the lines $t=a$ and $t=b$. Explain why

$$
\operatorname{area}(R)=\int_{a}^{b}[g(t)-f(t)] d t
$$

5. Let $f(t)=2 t$ and $g(t)=3-t^{2}$ for all $t \in \mathbb{R}$. Compute the area of the region bounded by the graphs of f and g over the interval $[-3,1]$.
