Assignment \#11

Due on Friday, November 2, 2012
Read Section 5.3, The Area Function as a Riemann Integral, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 15-5, pp. 322-324, in The Calculus Primer by William L. Schaaf.
Do the following problems

1. (A Geometric Sum). For a given real number, r, define the sum

$$
S_{n}=\sum_{k=1}^{n} r^{k}=r+r^{2}+r^{3}+\cdots+r^{n}
$$

(a) Multiply S_{n} by r and subtract S_{n} from $r S_{n}$ to obtain the expression

$$
(r-1) S_{n}=r^{n+1}-r .
$$

(b) Assume that $r \neq 1$ and derive the formula

$$
\sum_{k=1}^{n} r^{k}=\frac{r^{n+1}-r}{r-1}, \quad \text { for } r \neq 1
$$

2. (Estimating Logarithms).
(a) Refer to the sketch in Figure 1.

Figure 1: Sketch of graph of $y=1 / t$ with circumscribed rectangles
Find an upper estimate for $\ln (2.5)$ by comparing $\int_{1}^{2.5} \frac{1}{t} d t$ with the area of the circumscribed rectangles shown in the figure.

Figure 2: Sketch of graph of $y=1 / t$ with inscribed rectangles
(b) Refer to the sketch in Figure 2.

Find a lower estimate for $\ln (3)$ by comparing $\int_{1}^{3} \frac{1}{t} d t$ with the area of the inscribed rectangles shown in the figure.
3. Compute the area bounded by the graphs of $y=\cos t$ and $y=\sin t$ over the interval $[0,2 \pi]$
4. Compute the area bounded by the graphs of $y=t^{2}-4$ and the t-axis over the interval $[-3,3]$
5. Let $f(t)=\frac{1}{t^{2}}$, for all $t>0$. For each natural number n, define

$$
a_{n}=\int_{1}^{n} f(t) d t
$$

(a) Compute a_{n} for all $n \in \mathbb{N}$.
(b) Determine whether or not the sequence $\left(a_{n}\right)$ converges. If $\left(a_{n}\right)$ converges, compute $\lim _{n \rightarrow \infty} a_{n}$.

