Assignment #11

Due on Friday, November 2, 2012

Read Section 5.3, *The Area Function as a Riemann Integral*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 15-5, pp. 322–324, in *The Calculus Primer* by William L. Schaaf. **Do** the following problems

1. (A Geometric Sum). For a given real number, r, define the sum

$$S_n = \sum_{k=1}^n r^k = r + r^2 + r^3 + \dots + r^n.$$

(a) Multiply S_n by r and subtract S_n from rS_n to obtain the expression

$$(r-1)S_n = r^{n+1} - r.$$

(b) Assume that $r \neq 1$ and derive the formula

$$\sum_{k=1}^{n} r^{k} = \frac{r^{n+1} - r}{r - 1}, \quad \text{for } r \neq 1,$$

- 2. (Estimating Logarithms).
 - (a) Refer to the sketch in Figure 1.

Figure 1: Sketch of graph of y = 1/t with circumscribed rectangles

Find an upper estimate for $\ln(2.5)$ by comparing $\int_{1}^{2.5} \frac{1}{t} dt$ with the area of the circumscribed rectangles shown in the figure.

Figure 2: Sketch of graph of y = 1/t with inscribed rectangles

(b) Refer to the sketch in Figure 2.

Find a lower estimate for $\ln(3)$ by comparing $\int_{1}^{3} \frac{1}{t} dt$ with the area of the inscribed rectangles shown in the figure.

- 3. Compute the area bounded by the graphs of $y = \cos t$ and $y = \sin t$ over the interval $[0, 2\pi]$
- 4. Compute the area bounded by the graphs of $y = t^2 4$ and the *t*-axis over the interval [-3, 3]
- 5. Let $f(t) = \frac{1}{t^2}$, for all t > 0. For each natural number *n*, define

$$a_n = \int_1^n f(t) \ dt$$

- (a) Compute a_n for all $n \in \mathbb{N}$.
- (b) Determine whether or not the sequence (a_n) converges. If (a_n) converges, compute $\lim_{n \to \infty} a_n$.