Assignment #13

Due on Monday, November 19, 2012

Read Section 6.1, *Instantaneous Rate of Change*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Sections 1–7, 1–8 and 1–9, pp. 27–32, in *The Calculus Primer* by William L. Schaaf.

Read Sections 2–1, 2–2, 2–3, 2–4 and 2–5, pp. 47–54, in *The Calculus Primer* by William L. Schaaf.

Background and Definitions

• (The Derivative of a Function). Let f be a function defined on an open interval I and $t \in I$. If the limit

$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \tag{1}$$

exists, we call it the **instantaneous rate of change** of f at t. If the limit in (1) exists, we denote it by f'(t), and call f'(t) the **derivative** of f at t. We then have that

$$f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h},$$
(2)

provided that the limit in (1) exists.

• (Difference Quotient). The expression $\frac{f(t+h) - f(t)}{h}$, for $h \neq 0$, is called the difference quotient of f from t to t + h, and is denoted by $\frac{\Delta f}{\Delta t}$, read, "the change in f over the change in t." Thus, according to (2), if the limit in (1) exists,

$$f'(t) = \lim_{\Delta t \to 0} \frac{\Delta f}{\Delta t}.$$
(3)

• (Differential Notation). If the limit on the right-hand side of (3) exists, we denote it by $\frac{df}{dt}$. We then have that $f'(t) = \frac{df}{dt}$. The symbol df is called the differential of f and dt is the differential of t.

Do the following problems

1. Let $f(t) = t^{1/3}$ for all $t \in \mathbb{R}$. Show that the instantaneous rate of f at 0 does not exist.

- 2. Let $f(t) = t^{1/3}$ for all $t \in \mathbb{R}$.
 - (a) Use the factorization fact

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

to derive the identity

$$h = [(t+h)^{1/3} - t^{1/3}][(t+h)^{2/3} + t^{1/3}(t+h)^{1/3} + t^{2/3}].$$
 (4)

(b) Use the identity in (4) to show that, for $t \neq 0$, the limit

$$\lim_{h \to 0} \frac{(t+h)^{1/3} - t^{1/3}}{h}$$

exists, and compute f'(t) for $t \neq 0$.

- 3. Let f(t) = c for all $t \in \mathbb{R}$, where c is a constant. Show that the instantaneous rate of change of f exists for all t and compute $\frac{dc}{dt}$, for all t.
- 4. Let f(t) = t for all $t \in \mathbb{R}$. Show that f'(t) exists for all t and compute $\frac{dt}{dt}$, for all t.
- 5. Let $f(t) = t^2$ for all $t \in \mathbb{R}$. Show that f'(t) exists for all t and compute $\frac{df}{dt}$, for all t.