Assignment #14

Due on Monday, November 26, 2012

Read Section 6.2, *Differentiable Functions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Sections 2–1, 2–2, 2–3, 2–4 and 2–5, pp. 47–54, in *The Calculus Primer* by William L. Schaaf.

Background and Definitions

• (Differentiable Functions). Let f be a function defined on an open interval I and $t \in I$. We say that f is differentiable at t if the limit

$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \tag{1}$$

exists. If the limit in (1) exists for all $t \in I$, we say that f is differentiable in I. If f is differentiable at t, the limit in (1) is called the **derivative** of f at t and is denoted by f'(t) or $\frac{df}{dt}$.

- (Some Properties of Differentiable Functions). Let f and g be functions defined in an open interval, I. Assume that f and g are differentiable at some $t \in I$. Then,
 - (i) The functions f + g and f g are differentiable at t, and their derivatives at t are given by

$$(f+g)'(t) = f'(t) + g'(t)$$
 and $(f-g)'(t) = f'(t) - g'(t)$,

respectively;

(ii) for any constant c, the function cf is differentiable at t, and

$$(cf)'(t) = cf'(t).$$

Do the following problems

- 1. Let f be a real valued function defined in an open interval, I.
 - (a) Show that if f is differentiable at $a \in I$, then f is continuous at a.
 - (b) Give and example of a real valued function that is continuous at a point, but it is not differentiable there.

Math 30. Rumbos

2. Let $p(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_2 t^2 + a_1 t + a_o$, where $a_o, a_1, a_2, \dots, a_n$ are real constants, and $t \in \mathbb{R}$.

Use the properties of differentiable functions to deduce that the polynomial function p is differentiable in \mathbb{R} and compute f'(t) for all $t \in \mathbb{R}$.

3. Let $f(t) = \frac{1}{t}$, for $t \neq 0$. Compute the difference quotient $\frac{f(t+h) - f(t)}{h}$, for $h \neq 0$, and show that the limit

$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

exists, provided that $t \neq 0$.

Deduce that f is differentiable at $t \neq 0$, and give a formula for computing f'(t), for $t \neq 0$.

- 4. Let $f(t) = t + \frac{1}{t}$, for $t \neq 0$. Use properties of differentiable functions and the result of problem (3) to show that f is differentiable for $t \neq 0$ and compute f'(t), for $t \neq 0$.
- 5. Let $f(t) = \sin t$ for all $t \in \mathbb{R}$.
 - (a) Compute the difference quotient $\frac{f(0+h)-f(0)}{h}$, for $h \neq 0$, and show that its limit as $h \to 0$ exists.
 - (b) Deduce that f is differentiable at 0 and compute f'(0).