Assignment \#14

Due on Monday, November 26, 2012
Read Section 6.2, Differentiable Functions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Sections $2-1,2-2,2-3,2-4$ and $2-5$, pp. 47-54, in The Calculus Primer by William L. Schaaf.

Background and Definitions

- (Differentiable Functions). Let f be a function defined on an open interval I and $t \in I$. We say that f is differentiable at t if the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \tag{1}
\end{equation*}
$$

exists. If the limit in (1) exists for all $t \in I$, we say that f is differentiable in I. If f is differentiable at t, the limit in (1) is called the derivative of f at t and is denoted by $f^{\prime}(t)$ or $\frac{d f}{d t}$.

- (Some Properties of Differentiable Functions). Let f and g be functions defined in an open interval, I. Assume that f and g are differentiable at some $t \in I$. Then,
(i) The functions $f+g$ and $f-g$ are differentiable at t, and their derivatives at t are given by

$$
(f+g)^{\prime}(t)=f^{\prime}(t)+g^{\prime}(t) \quad \text { and } \quad(f-g)^{\prime}(t)=f^{\prime}(t)-g^{\prime}(t)
$$

respectively;
(ii) for any constant c, the function $c f$ is differentiable at t, and

$$
(c f)^{\prime}(t)=c f^{\prime}(t)
$$

Do the following problems

1. Let f be a real valued function defined in an open interval, I.
(a) Show that if f is differentiable at $a \in I$, then f is continuous at a.
(b) Give and example of a real valued function that is continuous at a point, but it is not differentiable there.
2. Let $p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{2} t^{2}+a_{1} t+a_{o}$, where $a_{o}, a_{1}, a_{2}, \ldots, a_{n}$ are real constants, and $t \in \mathbb{R}$.
Use the properties of differentiable functions to deduce that the polynomial function p is differentiable in \mathbb{R} and compute $f^{\prime}(t)$ for all $t \in \mathbb{R}$.
3. Let $f(t)=\frac{1}{t}$, for $t \neq 0$. Compute the difference quotient $\frac{f(t+h)-f(t)}{h}$, for $h \neq 0$, and show that the limit

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

exists, provided that $t \neq 0$.
Deduce that f is differentiable at $t \neq 0$, and give a formula for computing $f^{\prime}(t)$, for $t \neq 0$.
4. Let $f(t)=t+\frac{1}{t}$, for $t \neq 0$. Use properties of differentiable functions and the result of problem (3) to show that f is differentiable for $t \neq 0$ and compute $f^{\prime}(t)$, for $t \neq 0$.
5. Let $f(t)=\sin t$ for all $t \in \mathbb{R}$.
(a) Compute the difference quotient $\frac{f(0+h)-f(0)}{h}$, for $h \neq 0$, and show that its limit as $h \rightarrow 0$ exists.
(b) Deduce that f is differentiable at 0 and compute $f^{\prime}(0)$.

